Solveeit Logo

Question

Question: Find the change in the pH when \({\text{0}} \cdot {\text{01 Mol}}\) \({\text{C}}{{\text{H}}_{\text{3...

Find the change in the pH when 001 Mol{\text{0}} \cdot {\text{01 Mol}} CH3COONa{\text{C}}{{\text{H}}_{\text{3}}}{\text{COONa}} is added to one litre of 001 M{\text{0}} \cdot {\text{01 M}} CH3COOH{\text{C}}{{\text{H}}_{\text{3}}}{\text{COOH}}. (pKa=4.74{\text{p}}{{\text{K}}_{\text{a}}} = 4.74)
A) 327{\text{3}} \cdot {\text{27}}
B) 474{\text{4}} \cdot {\text{74}}
C) 137{\text{1}} \cdot {\text{37}}
D) 274{\text{2}} \cdot {\text{74}}

Explanation

Solution

The given problem can be solved by using the Henderson-Hasselbalch equation given below: pH=pKa+logconcn.  of  saltconcn.  of  acid{\text{pH}} = {\text{p}}{{\text{K}}_{\text{a}}} + \log \dfrac{{{\text{con}}{{\text{c}}^n}{\text{.}}\;{\text{of}}\;{\text{salt}}}}{{{\text{con}}{{\text{c}}^n}{\text{.}}\;{\text{of}}\;{\text{acid}}}}. One can put the correct values and can calculate the change in pH to make the correct choice of answer.

Complete step by step answer: 1) First of all for the determination of the change in pH, we need to first calculate the concentration of salt (CH3COONa)\left( {{\text{C}}{{\text{H}}_{\text{3}}}{\text{COONa}}} \right) from the given moles and volume as below,
Given data,
Moles of the salt, CH3COONa = 001 Mol{\text{C}}{{\text{H}}_{\text{3}}}{\text{COONa = 0}} \cdot {\text{01 Mol}}
Volume of salt =1L{\text{Volume of salt }} = 1L
2) Now let us see the formula for the calculation of concentration as below,
Concentration of CH3COONa = moles  of  CH3COONavolume{\text{Concentration of C}}{{\text{H}}_{\text{3}}}{\text{COONa = }}\dfrac{{{\text{moles}}\;{\text{of}}\;{\text{C}}{{\text{H}}_{\text{3}}}{\text{COONa}}}}{{{\text{volume}}}}
Now let us put the known values in the above formula we get,
Concentration of CH3COONa=0.01  mol1  L{\text{Concentration of C}}{{\text{H}}_{\text{3}}}{\text{COONa}} = \dfrac{{{\text{0}}{\text{.01}}\;{\text{mol}}}}{{{\text{1}}\;{\text{L}}}}
By doing the calculation part we get,
Concentration of CH3COONa=001mol/L or 001 M{\text{Concentration of C}}{{\text{H}}_{\text{3}}}{\text{COONa}} = 0 \cdot 01mol/L{\text{ or 0}} \cdot {\text{01 M}}
3) Now, let us substitute the values in the Henderson-Hasselbalch equation we get,
pH=pKa+logconc.  of  saltconc.  of  acid{\text{pH}} = {\text{p}}{{\text{K}}_{\text{a}}} + \log \dfrac{{{\text{conc}}{\text{.}}\;{\text{of}}\;{\text{salt}}}}{{{\text{conc}}{\text{.}}\;{\text{of}}\;{\text{acid}}}}
By putting the known values in the above equation we get,
pH=4.74+log0.01  M0.01  MpH = 4.74 + \log \dfrac{{{\text{0}}{\text{.01}}\;{\text{M}}}}{{{\text{0}}{\text{.01}}\;{\text{M}}}}
Now by doing the calculation we get,
pH=4.74+log1pH = 4.74 + \log 1
As the value of log1{\text{log1}} is zero we get the above equation as below,
pH=474pH = 4 \cdot 74
4) Therefore, the change in the pH when 001 Mol{\text{0}} \cdot {\text{01 Mol}} CH3COONa{\text{C}}{{\text{H}}_{\text{3}}}{\text{COONa}} is added to one liter of 001 M{\text{0}} \cdot {\text{01 M}} CH3COOH{\text{C}}{{\text{H}}_{\text{3}}}{\text{COOH}} is 474{\text{4}} \cdot {\text{74}} which shows option C as the correct choice of answer.

Note:
From the above calculated values, it can be seen that the pH and pKa{\text{p}}{{\text{K}}_{\text{a}}} values are the same. When the concentrations of acid and the conjugate base or salt are the same, i.e. when the acid is 50% {\text{50\% }} dissociated, the pH will be equal to the pKa{\text{p}}{{\text{K}}_{\text{a}}} of acid. From the above calculation, the pH value is coming out to be the same as that of pKa{\text{p}}{{\text{K}}_{\text{a}}} value which means the concentration is the same and there is no change in pH.