Solveeit Logo

Question

Question: Find the center of the arc represented by \[\arg \dfrac{{(z - 3i)}}{{(z - 2i + 4)}} = \dfrac{\pi }{4...

Find the center of the arc represented by arg(z3i)(z2i+4)=π4\arg \dfrac{{(z - 3i)}}{{(z - 2i + 4)}} = \dfrac{\pi }{4}
(A) 9i59i - 5
(B)12(9i5)\dfrac{1}{2}(9i - 5)
(C)9i+5 - 9i + 5
(D)12(9i+5)\dfrac{1}{2}( - 9i + 5)

Explanation

Solution

Substitute z=x+iyz = x + iy and simplify the fraction. Use the fact if z=a+ibz = a + ib where a0a \ne 0 thenarg(z)=arg(a+ib)=tan1ba=θ\arg (z) = \arg (a + ib) = {\tan ^{ - 1}}\dfrac{b}{a} = \theta to obtain the general equation of the circle on which the given arc lies. The required answer is the center of this circle.

Complete step by step answer:
Given that the arc is represented by arg(z3i)(z2i+4)=π4\arg \dfrac{{(z - 3i)}}{{(z - 2i + 4)}} = \dfrac{\pi }{4} and we need to find the center of this arc.
Now, the complex number z can be expressed as z=x+iyz = x + iy where x and y are real numbers and are called the real and imaginary parts of z respectively.
Substituting the valuez=x+iyz = x + iy in the given expression, we get the following equation:
(z3i)(z2i+4)=(x+iy3i)(x+iy2i+4)\dfrac{{(z - 3i)}}{{(z - 2i + 4)}} = \dfrac{{(x + iy - 3i)}}{{(x + iy - 2i + 4)}}
We will group the real and imaginary parts in the numerator and the denominator using brackets.
(z3i)(z2i+4)=[x+i(y3)][(x+4)+i(y2)]\dfrac{{(z - 3i)}}{{(z - 2i + 4)}} = \dfrac{{[x + i(y - 3)]}}{{[(x + 4) + i(y - 2)]}}
Then we simplify the fraction further and write it in the form of a + bi.
We can do this by multiplying and dividing with the complex conjugate of the denominator.
The denominator is (x+4)+i(y2)(x + 4) + i(y - 2).
Therefore, the complex conjugate would be (x+4)i(y2)(x + 4) - i(y - 2).
Thus, we get the following step:
(z3i)(z2i+4)=[x+i(y3)][(x+4)+i(y2)]=[x+i(y3)][(x+4)+i(y2)]×[(x+4)i(y2)][(x+4)i(y2)].......(i)\dfrac{{(z - 3i)}}{{(z - 2i + 4)}} = \dfrac{{[x + i(y - 3)]}}{{[(x + 4) + i(y - 2)]}} = \dfrac{{[x + i(y - 3)]}}{{[(x + 4) + i(y - 2)]}} \times \dfrac{{[(x + 4) - i(y - 2)]}}{{[(x + 4) - i(y - 2)]}}.......(i)
We will be multiplying the terms in the numerator followed by those in the denominator.
The formula for finding the product of two complex numbers z1=a+ib{z_1} = a + ib and z2=c+id{z_2} = c + id is given by z1z2=(a+ib)(c+id)=(acbd)+i(ad+bc).......(1){z_1}{z_2} = (a + ib)(c + id) = (ac - bd) + i(ad + bc).......(1)
Consider the numerator [x+i(y3)]×[(x+4)i(y2)][x + i(y - 3)] \times [(x + 4) - i(y - 2)]
We need to express the numerator in the form of (a+ib)(c+id)(a + ib)(c + id)

[x+i(y3)]×[(x+4)i(y2)][x + i(y - 3)] \times [(x + 4) - i(y - 2)]

=[x+i(y3)]×[(x+4)+i(1)(y2)]= [x + i(y - 3)] \times [(x + 4) + i( - 1)(y - 2)]

=[x+i(y3)]×[(x+4)+i(y+2)]= [x + i(y - 3)] \times [(x + 4) + i( - y + 2)]

Now, apply the product formula (1) for complex numbers

[x+i(y3)]×[(x+4)i(y2)][x + i(y - 3)] \times [(x + 4) - i(y - 2)]

=[x(x+4)(y3)(y+2)]+i[x(y+2)+(y3)(x+4)]= [x(x + 4) - (y - 3)( - y + 2)] + i[x( - y + 2) + (y - 3)(x + 4)]

Upon further simplification using the identity (x+a)(x+b)=x2+(a+b)x+ab(x + a)(x + b) = {x_2} + (a + b)x + ab, we get:

[x+i(y3)]×[(x+4)i(y2)] [x + i(y - 3)] \times [(x + 4) - i(y - 2)]

=[x(x+4)(y3)(y+2)]+i[x(y+2)+(y3)(x+4)]= [x(x + 4) - (y - 3)( - y + 2)] + i[x( - y + 2) + (y - 3)(x + 4)]

=[x2+4x((y2)+2y+3y6)]+i[xy+2x+(xy+4y3x12)]= [{x^2} + 4x - (( - {y^2}) + 2y + 3y - 6)] + i[ - xy + 2x + (xy + 4y - 3x - 12)]

=[x2+4x+y22y3y+6]+i[xy+2x+xy+4y3x12]= [{x^2} + 4x + {y^2} - 2y - 3y + 6] + i[ - xy + 2x + xy + 4y - 3x - 12]

=[x2+y2+4x5y6]+i[x+4y12]= [{x^2} + {y^2} + 4x - 5y - 6] + i[ - x + 4y - 12]

Thus, we have numerator =[x2+y2+4x5y6]+i[x+4y12] = [{x^2} + {y^2} + 4x - 5y - 6] + i[ - x + 4y - 12]
The formula for finding the product of a complex number z=a+ibz = a + ib and its conjugate zˉ=aib\bar z = a - ib is given by zzˉ=(a+ib)(aib)=(a2+b2)........(2)z\bar z = (a + ib)(a - ib) = ({a^2} + {b^2})........(2)
Consider the denominator [(x+4)+i(y2)]×[(x+4)i(y2)][(x + 4) + i(y - 2)] \times [(x + 4) - i(y - 2)]
After applying the identity given in (2), we get

[(x+4)+i(y2)]×[(x+4)i(y2)][(x + 4) + i(y - 2)] \times [(x + 4) - i(y - 2)]

=(x+4)2+(y2)2= {(x + 4)^2} + {(y - 2)^2}
Thus, equation (i) becomes,
(z3i)(z2i+4)=[x2+y2+4x5y6]+i[x+4y12](x+4)2+(y2)2=x2+y2+4x5y6(x+4)2+(y2)2+ix+4y12(x+4)2+(y2)2=p+iq....(3)\dfrac{{(z - 3i)}}{{(z - 2i + 4)}} = \dfrac{{[{x^2} + {y^2} + 4x - 5y - 6] + i[ - x + 4y - 12]}}{{{{(x + 4)}^2} + {{(y - 2)}^2}}} = \dfrac{{{x^2} + {y^2} + 4x - 5y - 6}}{{{{(x + 4)}^2} + {{(y - 2)}^2}}} + i\dfrac{{ - x + 4y - 12}}{{{{(x + 4)}^2} + {{(y - 2)}^2}}} = p + iq....(3)
We know that if z=a+ibz = a + ib where a0a \ne 0 thenarg(z)=arg(a+ib)=tan1ba=θ\arg (z) = \arg (a + ib) = {\tan ^{ - 1}}\dfrac{b}{a} = \theta
Clearly, we can see that p0p \ne 0 in (3) as the denominator of pp consists of (x+4)2{(x + 4)^2} which is a non-negative term.
Therefore, using the fact

tanπ4=1\tan \dfrac{\pi }{4} = 1

we get

arg(z3i)(z2i+4)=π4\arg \dfrac{{(z - 3i)}}{{(z - 2i + 4)}} = \dfrac{\pi }{4}
tan1(p+iq)=π4\Rightarrow {\tan ^{ - 1}}(p + iq) = \dfrac{\pi }{4}

qp=tanπ4=1\Rightarrow \dfrac{q}{p} = \tan \dfrac{\pi }{4} = 1
q=p\Rightarrow q = p
x+4y12(x+4)2+(y2)2=x2+y2+4x5y6(x+4)2+(y2)2\Rightarrow \dfrac{{ - x + 4y - 12}}{{{{(x + 4)}^2} + {{(y - 2)}^2}}} = \dfrac{{{x^2} + {y^2} + 4x - 5y - 6}}{{{{(x + 4)}^2} + {{(y - 2)}^2}}}
x+4y12=x2+y2+4x5y6\Rightarrow - x + 4y - 12 = {x^2} + {y^2} + 4x - 5y - 6
x2+y2+5x9y+6=0.....(4)\Rightarrow {x^2} + {y^2} + 5x - 9y + 6 = 0.....(4)
Now, equation (4) is an equation of a circle.
The required answer is the center of this circle.
The general equation of a circle is   x2+y2+2gx+2fy+c=0\;{x^2} + {y^2} + 2gx + 2fy + c = 0 where (g,f)\left( { - g, - f} \right) represents the coordinates of the center of the circle.
On comparing equation (4) with the general equation, we get 2g=5g=522g = 5 \Rightarrow g = \dfrac{5}{2} and 2f=9f=922f = - 9 \Rightarrow f = \dfrac{{ - 9}}{2}
Therefore, (g,f)=(52,92)\left( { - g, - f} \right) = (\dfrac{{ - 5}}{2},\dfrac{9}{2})

Note: While using the fact if z=a+ibz = a + ib where a0a \ne 0 then arg(z)=arg(a+ib)=tan1ba=θ\arg (z) = \arg (a + ib) = {\tan ^{ - 1}}\dfrac{b}{a} = \theta one needs to be careful in questions where a=0a = 0, i.e. the complex number has no real part. In such cases, this method does not work.