Question
Mathematics Question on Three Dimensional Geometry
Find the cartesian equations of the following planes:
r.(i^+j^−k^)=2 (b) r.(2i^+3j^−4k^)=1
(c) r.[(s−2t)i^+(3−t)j^+(2s+t)k^)=15
(a)It is given that equation of the plane is
r.(i^+j^−k^)=2...(1)
For any arbitrary point P(x,y,z) on the plane, position vector r→ is given by,
r.(xi^+yj^−zk^)=zk^
Substituting the value of r in equation(1), we obtain
(xi^+yj^−zk^).(i^+j^−k^)=2
⇒ x+y-z=2
This is the cartesian equation of the plane.
(b) r.(2i^+3j^−4k^)=1...(1)
For any arbitrary point P(x,y,z) on the plane, position vector r is given by,
r.(xi^+yj^−zk^)
Substituting the value of r in equation(1), we obtain
(xi^+yj^+zk^)=zk^(2i^+3j^−4k^)=1
⇒ 2x+3y-4z=1
This is the cartesian equation of the plane.
(c) r.[(s−2t)i^+(3−t)j^+(2s+t)k^)=15...(1)
For any arbitrary point P(x,y,z) on the plane, position vectorr is given by,
r.(xi^+yj^−zk^)
Substituting the value of r→ in equation(1), we obtain
r.(xi^+yj^−zk^).[(s−2t)i^+(3−t)j^+(2s+t)k^)=15
⇒ (s-2t)x+(3-t)y+(2s+t)z=15
This is the cartesian equation of the given plane.