Solveeit Logo

Question

Mathematics Question on Three Dimensional Geometry

Find the cartesian equations of the following planes:

r.(i^+j^k^)=2\overrightarrow r.(\hat i+\hat j-\hat k)=2 (b) r.(2i^+3j^4k^)=1\overrightarrow r.(2\hat i+3\hat j-4\hat k)=1

(c) r.[(s2t)i^+(3t)j^+(2s+t)k^)=15\overrightarrow r.[(s-2t)\hat i+(3-t)\hat j+(2s+t)\hat k)=15

Answer

(a)It is given that equation of the plane is

r.(i^+j^k^)=2\overrightarrow r.(\hat i+\hat j-\hat k)=2...(1)

For any arbitrary point P(x,y,z) on the plane, position vector r→ is given by,
r.(xi^+yj^zk^)=zk^\overrightarrow r.(x\hat i+y\hat j-z\hat k)=z\hat k

Substituting the value of r\overrightarrow r in equation(1), we obtain
(xi^+yj^zk^).(i^+j^k^)=2(x\hat i+y\hat j-z\hat k).(\hat i+\hat j-\hat k)=2
\Rightarrow x+y-z=2

This is the cartesian equation of the plane.


(b) r.(2i^+3j^4k^)=1\overrightarrow r.(2\hat i+3\hat j-4\hat k)=1...(1)

For any arbitrary point P(x,y,z) on the plane, position vector r\overrightarrow r is given by,
r.(xi^+yj^zk^)\overrightarrow r.(x\hat i+y\hat j-z\hat k)

Substituting the value of r\overrightarrow r in equation(1), we obtain
(xi^+yj^+zk^)=zk^(2i^+3j^4k^)=1(x\hat i+y\hat j+z\hat k)=z\hat k (2\hat i+3\hat j-4\hat k)=1
\Rightarrow 2x+3y-4z=1

This is the cartesian equation of the plane.


(c) r.[(s2t)i^+(3t)j^+(2s+t)k^)=15\overrightarrow r.[(s-2t)\hat i+(3-t)\hat j+(2s+t)\hat k)=15...(1)

For any arbitrary point P(x,y,z) on the plane, position vectorr\overrightarrow r is given by,
r.(xi^+yj^zk^)\overrightarrow r.(x\hat i+y\hat j-z\hat k)

Substituting the value of r→ in equation(1), we obtain
r.(xi^+yj^zk^)\overrightarrow r.(x\hat i+y\hat j-z\hat k).[(s2t)i^+(3t)j^+(2s+t)k^)=15[(s-2t)\hat i+(3-t)\hat j+(2s+t)\hat k)=15
\Rightarrow (s-2t)x+(3-t)y+(2s+t)z=15

This is the cartesian equation of the given plane.