Solveeit Logo

Question

Mathematics Question on Volume of a Right Circular Cone

Find the capacity in liters of a conical vessel with
(i) radius 7 cm, slant height 25 cm
(ii) height 12 cm, slant height 13 cm

Answer

(i) Radius of the cone, r = 7cm
Slant height of the cone, l = 25cm
Height of the cone, h=l2r2h = \sqrt{l² - r²}
=(25)2(7)2= \sqrt{(25)² - (7)²}
=625\-49= \sqrt{625 \- 49}
=576= \sqrt{576}
h = 24 cm

Volume of cone =13 \frac{1}{3} π\pi r²h
= 13\frac{1}{3} × 227\frac{22}{7} × 7 cm × 7 cm × 24 cm
= 1232 cm³
= 1232 × (11000\frac{1}{1000}L)
= 1.232 liters


(ii) Height of the cone, h = 7cm
Slant height of the cone, l = 13cm
Radius of the cone, r=l2h2r = \sqrt{l² - h²}
=(13)2(12)2= \sqrt{(13)² - (12)²}
=169144= \sqrt{169 -144}
=25= \sqrt{25}
r = 5 cm

Volume of the cone = \frac{1}{3}$$\pir²h
= 13\frac{1}{3} × 227\frac{22}{7} × 5 cm × 5 cm × 12 cm
=22007= \frac{2200}{7} cm³
=22007×11000 L= \frac{2200}{7} × \frac{1}{1000}\ L
=1135=\frac{ 11}{35} litres