Solveeit Logo

Question

Mathematics Question on Vector Algebra

Find the area of the triangle with vertices A(1,1,2),B(2,3,5),and  C(1,5,5). A(1,1,2),B(2,3,5),and \space C(1,5,5).

Answer

The vertices of triangle ABC are given as A(1,1,2),B(2,3,5),and  C(1,5,5).A(1,1,2),B(2,3,5),and \space C(1,5,5).
The adjacent sides AB\overrightarrow{AB} and BC\overrightarrow{BC} of ABC△ABC are given as:


\overrightarrow{AB}$$=(2-1)\hat{i}+(3-1)\hat{j}+(5-2)\hat{k}=\hat{i}+2\hat{j}+3\hat{k}
BC=(12)i^+(53)j^+(55)k^=i^+2j^\overrightarrow{BC}=(1-2)\hat{i}+(5-3)\hat{j}+(5-5)\hat{k}=-\hat{i}+2\hat{j}
Area of ABC=12AB×BC△ABC=\frac{1}{2}|\overrightarrow{AB}\times \overrightarrow{BC}|
AB×AC\overrightarrow{AB}\times\overrightarrow{AC}=i^j^k^ 123120\begin{vmatrix} \hat{i} & \hat{j} & \hat{k}\\\ 1 & 2 & 3\\\\-1&2&0 \end{vmatrix}=i^(6)j^(3)+k^(2+2)=6i^+3j^+4k^\hat{i}(-6)-\hat{j}(3)+\hat{k}(2+2)=-6\hat{i}+3\hat{j}+4\hat{k}
|AB×AC\overrightarrow{AB}\times\overrightarrow{AC}|=\sqrt{(-6)^{2}+(-3)^{2}+4^{2}}$$=\sqrt{36+9+16}=\sqrt{61}
Hence,the area of ABC△ABC is 612\sqrt{\frac{61}{2}}square units.