Solveeit Logo

Question

Question: Find the area of the triangle formed by the coordinated of whose angular points are \( \left( { - 3,...

Find the area of the triangle formed by the coordinated of whose angular points are (3,30),(5,150)\left( { - 3, - {{30}^ \circ }} \right),\left( {5,{{150}^ \circ }} \right) and (7,210)\left( {7,{{210}^ \circ }} \right)

Explanation

Solution

This problem deals with the area of the triangle. Here, given the angular points, we have to convert these coordinates into polar coordinates and then find the area of the triangle from the obtained polar coordinates.
The area of the triangle which is obtained from the polar coordinates formula is used here:
12x1y2x2y1+x2y3x3y2+x3y1x1y3\Rightarrow \dfrac{1}{2}\left| {{x_1}{y_2} - {x_2}{y_1} + {x_2}{y_3} - {x_3}{y_2} + {x_3}{y_1} - {x_1}{y_3}} \right|
Where the points (x1,y1)\left( {{x_1},{y_1}} \right) , (x2,y2)\left( {{x_2},{y_2}} \right) , (x3,y3)\left( {{x_3},{y_3}} \right) are the vertices of the triangle.

Complete step-by-step answer:
Given three angular points which are also called as polar coordinates which are: (3,30),(5,150)\left( { - 3, - {{30}^ \circ }} \right),\left( {5,{{150}^ \circ }} \right) and (7,210)\left( {7,{{210}^ \circ }} \right) .
Consider the first angular point (3,30)\left( { - 3, - {{30}^ \circ }} \right) ,
Here r=3r = - 3 and θ=30\theta = - {30^ \circ } .
Let the x and y coordinate of this angular point be A=(x1,y1)A = \left( {{x_1},{y_1}} \right)
Then the x-coordinate of the polar coordinate is given by:
x=rcosθ\Rightarrow x = r\cos \theta
x=(3)cos(30)\Rightarrow x = \left( { - 3} \right)\cos \left( { - {{30}^ \circ }} \right)
As we know that cos(30)=cos(30)\Rightarrow \cos \left( { - {{30}^ \circ }} \right) = \cos \left( {{{30}^ \circ }} \right)
x=(3)cos(30)\Rightarrow x = \left( { - 3} \right)\cos \left( {{{30}^ \circ }} \right)
As the value of cos(30)=32\cos \left( {{{30}^ \circ }} \right) = \dfrac{{\sqrt 3 }}{2} ;
x=(3)(32)\Rightarrow x = \left( { - 3} \right)\left( {\dfrac{{\sqrt 3 }}{2}} \right)
x=332\Rightarrow x = \dfrac{{ - 3\sqrt 3 }}{2}
The y-coordinate of the polar coordinate is given by:
y=rsinθ\Rightarrow y = r\sin \theta
y=(3)sin(30)\Rightarrow y = \left( { - 3} \right)\sin \left( { - {{30}^ \circ }} \right)
As the value of sin(30)=12\sin \left( { - {{30}^ \circ }} \right) = \dfrac{{ - 1}}{2} ;
y=(3)(12)\Rightarrow y = \left( { - 3} \right)\left( {\dfrac{{ - 1}}{2}} \right)
y=32\Rightarrow y = \dfrac{3}{2}
A=(332,32)\therefore A = \left( {\dfrac{{ - 3\sqrt 3 }}{2},\dfrac{3}{2}} \right)
Now consider the second angular point (5,150)\left( {5,{{150}^ \circ }} \right) ,
Here r=5r = 5 and θ=150\theta = {150^ \circ } .
Let the x and y coordinate of this angular point be B=(x2,y2)B = \left( {{x_2},{y_2}} \right)
Then the x-coordinate of the polar coordinate is given by:
x=rcosθ\Rightarrow x = r\cos \theta
x=(5)cos(150)\Rightarrow x = \left( 5 \right)\cos \left( {{{150}^ \circ }} \right)
As the value of cos(150)=32\cos \left( {{{150}^ \circ }} \right) = \dfrac{{ - \sqrt 3 }}{2} ;
x=(5)(32)\Rightarrow x = \left( 5 \right)\left( {\dfrac{{ - \sqrt 3 }}{2}} \right)
x=532\Rightarrow x = \dfrac{{ - 5\sqrt 3 }}{2}
The y-coordinate of the polar coordinate is given by:
y=rsinθ\Rightarrow y = r\sin \theta
y=(5)sin(150)\Rightarrow y = \left( 5 \right)\sin \left( {{{150}^ \circ }} \right)
As the value of sin(150)=12\sin \left( {{{150}^ \circ }} \right) = \dfrac{1}{2} ;
y=(5)(12)\Rightarrow y = \left( 5 \right)\left( {\dfrac{1}{2}} \right)
y=52\Rightarrow y = \dfrac{5}{2}
B=(532,52)\therefore B = \left( {\dfrac{{ - 5\sqrt 3 }}{2},\dfrac{5}{2}} \right)
Now consider the third angular point (7,210)\left( {7,{{210}^ \circ }} \right) ,
Here r=7r = 7 and θ=210\theta = {210^ \circ } .
Let the x and y coordinate of this angular point be C=(x3,y3)C = \left( {{x_3},{y_3}} \right)
Then the x-coordinate of the polar coordinate is given by:
x=rcosθ\Rightarrow x = r\cos \theta
x=(7)cos(210)\Rightarrow x = \left( 7 \right)\cos \left( {{{210}^ \circ }} \right)
As the value of cos(210)=32\cos \left( {{{210}^ \circ }} \right) = \dfrac{{ - \sqrt 3 }}{2} ;
x=(7)(32)\Rightarrow x = \left( 7 \right)\left( {\dfrac{{ - \sqrt 3 }}{2}} \right)
x=732\Rightarrow x = \dfrac{{ - 7\sqrt 3 }}{2}
The y-coordinate of the polar coordinate is given by:
y=rsinθ\Rightarrow y = r\sin \theta
y=(7)sin(210)\Rightarrow y = \left( 7 \right)\sin \left( {{{210}^ \circ }} \right)
y=(7)(12)\Rightarrow y = \left( 7 \right)\left( {\dfrac{{ - 1}}{2}} \right)
As the value of sin(210)=12\sin \left( {{{210}^ \circ }} \right) = \dfrac{{ - 1}}{2} ;
y=72\Rightarrow y = \dfrac{{ - 7}}{2}
C=(732,72)\therefore C = \left( {\dfrac{{ - 7\sqrt 3 }}{2},\dfrac{{ - 7}}{2}} \right)
So the vertices of the triangle are : A(332,32)A\left( {\dfrac{{ - 3\sqrt 3 }}{2},\dfrac{3}{2}} \right) , B(532,52)B\left( {\dfrac{{ - 5\sqrt 3 }}{2},\dfrac{5}{2}} \right) and C(732,72)C\left( {\dfrac{{ - 7\sqrt 3 }}{2},\dfrac{{ - 7}}{2}} \right) .
The area of the triangle is given by:
ΔABC=12x1y2x2y1+x2y3x3y2+x3y1x1y3\Rightarrow \Delta ABC = \dfrac{1}{2}\left| {{x_1}{y_2} - {x_2}{y_1} + {x_2}{y_3} - {x_3}{y_2} + {x_3}{y_1} - {x_1}{y_3}} \right|
ΔABC=12(332)(52)(532)(32)+(532)(72)(732)(52)+(732)(32)(332)(72)\Rightarrow \Delta ABC = \dfrac{1}{2}\left| {\left( {\dfrac{{ - 3\sqrt 3 }}{2}} \right)\left( {\dfrac{5}{2}} \right) - \left( {\dfrac{{ - 5\sqrt 3 }}{2}} \right)\left( {\dfrac{3}{2}} \right) + \left( {\dfrac{{ - 5\sqrt 3 }}{2}} \right)\left( {\dfrac{{ - 7}}{2}} \right) - \left( {\dfrac{{ - 7\sqrt 3 }}{2}} \right)\left( {\dfrac{5}{2}} \right) + \left( {\dfrac{{ - 7\sqrt 3 }}{2}} \right)\left( {\dfrac{3}{2}} \right) - \left( {\dfrac{{ - 3\sqrt 3 }}{2}} \right)\left( {\dfrac{{ - 7}}{2}} \right)} \right|
Multiplying the terms inside the modulus as given by:
ΔABC=12(1534)(1534)+(3534)(3534)+(2134)(2134)\Rightarrow \Delta ABC = \dfrac{1}{2}\left| {\left( {\dfrac{{ - 15\sqrt 3 }}{4}} \right) - \left( {\dfrac{{ - 15\sqrt 3 }}{4}} \right) + \left( {\dfrac{{35\sqrt 3 }}{4}} \right) - \left( {\dfrac{{ - 35\sqrt 3 }}{4}} \right) + \left( {\dfrac{{ - 21\sqrt 3 }}{4}} \right) - \left( {\dfrac{{21\sqrt 3 }}{4}} \right)} \right|
ΔABC=121534+1534+3534+353421342134\Rightarrow \Delta ABC = \dfrac{1}{2}\left| {\dfrac{{ - 15\sqrt 3 }}{4} + \dfrac{{15\sqrt 3 }}{4} + \dfrac{{35\sqrt 3 }}{4} + \dfrac{{35\sqrt 3 }}{4} - \dfrac{{21\sqrt 3 }}{4} - \dfrac{{21\sqrt 3 }}{4}} \right|
Here the terms 1534\dfrac{{15\sqrt 3 }}{4} and 1534\dfrac{{ - 15\sqrt 3 }}{4} gets cancelled, as simplified below:
ΔABC=1235322132\Rightarrow \Delta ABC = \dfrac{1}{2}\left| {\dfrac{{35\sqrt 3 }}{2} - \dfrac{{21\sqrt 3 }}{2}} \right|
ΔABC=121432\Rightarrow \Delta ABC = \dfrac{1}{2}\left| {\dfrac{{14\sqrt 3 }}{2}} \right|
ΔABC=732\therefore \Delta ABC = \dfrac{{7\sqrt 3 }}{2}
Hence the area of the triangle is 732\dfrac{{7\sqrt 3 }}{2} sq. units.

Final answer: The area of the triangle formed by the coordinated of whose angular points are (3,30),(5,150)\left( { - 3, - {{30}^ \circ }} \right),\left( {5,{{150}^ \circ }} \right) and (7,210)\left( {7,{{210}^ \circ }} \right) is 732\dfrac{{7\sqrt 3 }}{2} sq. units.

Note:
Please note that while solving the problem, we should understand that only the cosine and secant trigonometric ratios of negative angles is positive, all the other trigonometric ratios of negative angles are negative. Which is given by:
sin(θ)=sinθ\Rightarrow \sin \left( { - \theta } \right) = - \sin \theta
cos(θ)=cosθ\Rightarrow \cos \left( { - \theta } \right) = \cos \theta
tan(θ)=tanθ\Rightarrow \tan \left( { - \theta } \right) = - \tan \theta
cot(θ)=cotθ\Rightarrow \cot \left( { - \theta } \right) = - \cot \theta
sec(θ)=secθ\Rightarrow \sec \left( { - \theta } \right) = \sec \theta
cosec(θ)=cosecθ\Rightarrow \cos ec\left( { - \theta } \right) = - \cos ec\theta