Solveeit Logo

Question

Mathematics Question on applications of integrals

Find the area of the smaller region bounded by the ellipse x2a2\frac{x^2}{a^2}+y2b2\frac{y^2}{b^2}=1 and the line xa\frac{x}{a}+yb\frac{y}{b}=1

Answer

The area of the smaller region bounded by the ellipse,x2a2\frac{x^2}{a^2}+y2b2\frac{y^2}{b^2}2=1,and the line,

xa\frac{x}{a}+yb\frac{y}{b}=1,is represented by the shaded region BCAB as

∴Area BCAB=Area(OBCAO)–Area(OBAO)

=

\int_{0}^{a} 1-\frac{x^2}{a^2} \,dx$$$$-\int_{0}^{a} b(1-\frac{x}{a}) \,dx

=ba\frac{b}{a}

0aa2x2dx\int_{0}^{a} \sqrt{a^2-x^2} \,dx

-\frac{b}{a}$$\int_{0}^{a} (a-x) \,dx

=ba\frac{b}{a}[{x2a2x2\frac{x}{2}\sqrt{a^2-x^2} +a22sin1xa\frac{a^2}{2}\sin^{-1}\frac{x}{a}}a0-{ax-x22\frac{x^2}{2}}a0]

=ba\frac{b}{a}[{a22\frac{a^2}{2}(π2\frac{π}{2})}-{a2-a22\frac{a^2}{2}}]

=ba\frac{b}{a}[a2π4\frac{a^2π}{4}-a22\frac{a^2}{2}]

=ba22a\frac{ba^2}{2a}[π2\frac{π}{2}-1]

=ab2\frac{ab}{2}[π2\frac{π}{2}-1]

=ab4\frac{ab}{4}(π-2)