Solveeit Logo

Question

Mathematics Question on applications of integrals

Find the area of the region(x,y):y24x,4x2+4y29{(x,y):y^2≤4x,4x^2+4y^2≤9}

Answer

The correct answer is:0122xdx+123212(3)2(2x)2dx∫^{\frac{1}{2}}_02\sqrt{x}dx+∫^{\frac{3}{2}}_{\frac{1}{2}}\frac{1}{2}\sqrt{(3)^2-(2x)^2}dx
The area bounded by the curves,(x,y):y24x,4x2+4y29{(x,y):y^2≤4x,4x^2+4y^2≤9},is represented as
Application of integral
The points of intersection of both the curves are(12,2)(\frac{1}{2},\sqrt{2})and(12,2).(\frac{1}{2},-\sqrt{2}).
The required area is given by OABCO.
It can be observed that area OABCO is symmetrical about xx-axis.
AreaOABCO=2×AreaOBC∴ Area\,\, OABCO=2\times Area\,\, OBC
AreaOBCO=AreaOMC+AreaMBCArea\,\, OBCO=Area\,\, OMC+Area\,\, MBC
=0122xdx+12321294x2dx=∫^{\frac{1}{2}}_02\sqrt{x}dx+∫^{\frac{3}{2}}_{\frac{1}{2}}\frac{1}{2}\sqrt{9-4x^2}dx
=0122xdx+123212(3)2(2x)2dx=∫^{\frac{1}{2}}_02\sqrt{x}dx+∫^{\frac{3}{2}}_{\frac{1}{2}}\frac{1}{2}\sqrt{(3)^2-(2x)^2}dx