Solveeit Logo

Question

Mathematics Question on applications of integrals

Find the area of the region enclosed by the parabola x2=yx^2=y,the line y=x+2y=x+2 and xaxisx-axis

Answer

The correct answer is:56units\frac{5}{6}units
The area of the region enclosed by the parabola,x2=yx^2=y,the line,y=x+2y=x+2,and xaxisx-axis
is represented by the shaded region OABCO as
Parabola
The point of intersection of the parabola,x2=yx^2=y,and the line,y=x+2y=x+2,is A(1,1).A(–1,1).
∴Area OABCO=Area(BCA)+Area COAC
=21(x+2)dx+10x2dx=∫^{-1}_{-2}(x+2)dx+∫^0_{-1}x^2dx
=[x22+2x]21+[x33]10=\bigg[\frac{x^2}{2}+2x\bigg]^{-1}_{-2}+\bigg[\frac{x^3}{3}\bigg]^0_{-1}
=[(1)22+2(1)(2)222(2)]+[(1)33]=[\frac{(-1)^2}{2}+2(-1)-(\frac{-2)^2}{2}-2(-2)]+[-\frac{(-1)^3}{3}]
=[1222+4+13]=[\frac{1}{2}-2-2+4+\frac{1}{3}]
=56units=\frac{5}{6}units