Solveeit Logo

Question

Question: Find the area of the region bounded by \( {y^2} = 9x \) , \( x = 2 \) , \( x = 4 \) and the x-axis i...

Find the area of the region bounded by y2=9x{y^2} = 9x , x=2x = 2 , x=4x = 4 and the x-axis in the first quadrant.

Explanation

Solution

Hint : We will first plot the graph of the given equation. Since it is given in the question that we need to find the area only in the first quadrant, hence we find the limits of yy in the first quadrant from the equation of the curve. Then we will integrate to find the area of the region required within the limit derived.

Complete step-by-step answer :
We have a given curve y2=9x{y^2} = 9x . Now we will plot y2=9x{y^2} = 9x , x=2x = 2 , x=4x = 4 on the graph as shown:

The required area that we need to find is BCEFBCEF . This can be expressed as:
Areaof  BCFE=24ydx{\rm{Area }}\,{\rm{of}}\;BCFE = \int\limits_2^4 {y \cdot dx}
We have given a curve y2=9x{y^2} = 9x .
We will root of the above equation as
y=±9x y=±3x\begin{array}{l} y = \pm \sqrt {9x} \\\ y = \pm 3\sqrt x \end{array}
We can see that BCEFBCEF is in the first quadrant, we will only consider 3x3\sqrt x for yy . Now, we will substitute 3x3\sqrt x for yy in the expression of an area of BCFEBCFE .
Areaof  BCFE=24ydx Areaof  BCFE=324xdx Areaof  BCFE=324x12dx\begin{array}{l} {\rm{Area }}\,{\rm{of}}\;BCFE = \int\limits_2^4 {y \cdot dx} \\\ {\rm{Area }}\,{\rm{of}}\;BCFE = 3\int\limits_2^4 {\sqrt x \cdot dx} \\\ {\rm{Area }}\,{\rm{of}}\;BCFE = 3\int\limits_2^4 {{x^{\dfrac{1}{2}}} \cdot dx} \end{array}
On integrating the above expression we get,
Areaof  BCFE=3[x12+112+1]24 Areaof  BCFE=3[x3232]24 Areaof  BCFE=3×23[x32]24\begin{array}{l} {\rm{Area }}\,{\rm{of}}\;BCFE = 3\left[ {\dfrac{{{x^{\dfrac{1}{2} + 1}}}}{{\dfrac{1}{2} + 1}}} \right]_2^4\\\ {\rm{Area }}\,{\rm{of}}\;BCFE = 3\left[ {\dfrac{{{x^{\dfrac{3}{2}}}}}{{\dfrac{3}{2}}}} \right]_2^4\\\ {\rm{Area }}\,{\rm{of}}\;BCFE = 3 \times \dfrac{2}{3}\left[ {{x^{\dfrac{3}{2}}}} \right]_2^4 \end{array}
We will substitute the limits in the above expression we will get,
Areaof  BCFE=2[(4)32(2)32]24 Areaof  BCFE=2[(4)32(2)32]24 Areaof  BCFE=2[(2)3(212)3]24 Areaof  BCFE=2[(2)3(2)3]24\begin{array}{l} {\rm{Area }}\,{\rm{of}}\;BCFE = 2\left[ {{{\left( 4 \right)}^{\dfrac{3}{2}}} - {{\left( 2 \right)}^{\dfrac{3}{2}}}} \right]_2^4\\\ {\rm{Area }}\,{\rm{of}}\;BCFE = 2\left[ {{{\left( 4 \right)}^{\dfrac{3}{2}}} - {{\left( 2 \right)}^{\dfrac{3}{2}}}} \right]_2^4\\\ {\rm{Area }}\,{\rm{of}}\;BCFE = 2\left[ {{{\left( 2 \right)}^3} - {{\left( {{2^{\dfrac{1}{2}}}} \right)}^3}} \right]_2^4\\\ {\rm{Area }}\,{\rm{of}}\;BCFE = 2\left[ {{{\left( 2 \right)}^3} - {{\left( {\sqrt 2 } \right)}^3}} \right]_2^4 \end{array}
We will simplify the above expression as ‘
Areaof  BCFE=2[822] Areaof  BCFE=1642\begin{array}{l} {\rm{Area }}\,{\rm{of}}\;BCFE = 2\left[ {8 - 2\sqrt 2 } \right]\\\ {\rm{Area }}\,{\rm{of}}\;BCFE = 16 - 4\sqrt 2 \end{array}
Hence, the area bound is 164216 - 4\sqrt 2 square units.

Note : The first thing that is to be kept in mind is that we only need to find the rea in the first quadrant. Hence the limits of integration will be found according to this. Secondly, We should have prior knowledge about the plotting of curves and lines on the graph.