Solveeit Logo

Question

Mathematics Question on integral

Find the area of the region bounded by x2=4y,y=2,y=4 and the x-axis in the first quadrant.

Answer

x'xy'y

The area of the region bounded by the curve, x2 = 4y,y=2,and y=4,and the y-axis

is the area ABCD.

Area of ABCD=24xdy\int^4_2xdy

=242ydy\int^4_2 2\sqrt ydy

=224ydy2\int^4_2 \sqrt ydy

=2[y3232]242\bigg[\frac{y^{\frac{3}{2}}}{\frac{3}{2}}\bigg]^4_2

=43[(4)32(2)32]\frac{4}{3}\bigg[(4)^{\frac{3}{2}}-(2)^{\frac{3}{2}}\bigg]

=43\frac{4}{3}[8-22\sqrt 2]

=(32823)\bigg(\frac{32-8\sqrt 2}{3}\bigg)units