Solveeit Logo

Question

Mathematics Question on applications of integrals

Find the area of the region bounded by the ellipse x24+y29=1\frac{x2}{4}+\frac{y^2}{9}=1

Answer

The given equation of the ellipse can be represented as

x24+y29=1\frac{x2}{4}+\frac{y^2}{9}=1

y=31x24...(1)⇒y=3√1-\frac{x2}{4}...(1)

It can be observed that the ellipse is symmetrical about x-axis and y-axis.

∴Area bounded by ellipse=4×Area OAB

AreaofOAB=02ydx∴Area of OAB=∫_0^2ydx

=0231x24dx[Using(1)]=∫_0^2 3√1-\frac{x^2}{4}dx [Using(1)]

=32024x2dx=\frac{3}{2}∫_0^2√4-x^2dx

=32[x24x2+42sinx2]02=\frac{3}{2}[\frac{x}{2}√4-x^2+\frac{4}{2}sin-\frac{x}{2}]_0^2

=32[2π2]=\frac{3}{2}[\frac{2π}{2}]

=3π2=\frac{3π}{2}

Therefore,area bounded by the ellipse =4×3π2×\frac{3π}{2}=6πunits.