Solveeit Logo

Question

Mathematics Question on integral

Find the area of the region bounded by the ellipse x216+y29=1\frac{x^2}{16}+\frac{y^2}{9}=1

Answer

The given equation of the ellipse, x216+y29=1\frac{x^2}{16}+\frac{y^2}{9}=1 ,can be represented as

It can be observed that the ellipse is symmetrical about x-axis and y-axis.

∴Area bounded by ellipse=4×Area of OAB

Area of OAB=04ydx\int^4_0ydx

=0431x216dx\int^4_03\sqrt{1-\frac{x^2}{16}}dx

=340416x2dx\frac{3}{4}\int^4_0\sqrt{16-x^2}dx

=34[x216x2+162sin1x4]04\frac{3}{4}\bigg[\frac{x}{2}\sqrt{16-x^2}+\frac{16}{2}\sin^{-1}\frac{x}{4}\bigg]^4_0

=34\frac{3}{4}[21616\sqrt{16-16}+8sin-1(1)-0-8sin-1(0)]

=34[8π2]\frac{3}{4}\bigg[\frac{8\pi}{2}\bigg]

=34[4π]\frac{3}{4}[4\pi]

=3π\pi

Therefore, area bounded by the ellipse= 4×3π\pi=12π\pi units.