Solveeit Logo

Question

Question: Find the area of the polar curve,\(r = 2\sin \theta \) from \(0 \leqslant \theta \leqslant \pi .\)...

Find the area of the polar curve,r=2sinθr = 2\sin \theta from 0θπ.0 \leqslant \theta \leqslant \pi .

Explanation

Solution

We’ll use the formula for the area of the polar curves which is A=θ1θ212r2dθA = \int\limits_{\theta 1}^{\theta 2} {\dfrac{1}{2}{r^2}d\theta } , using the integration method as the limits of the variable i.e. theta is given to us.
Substituting and then simplifying the equation we’ll get the area of the polar curves.

Complete step-by-step answer:
Given data: r=2sinθr = 2\sin \theta where 0θπ.0 \leqslant \theta \leqslant \pi .

We know that the formula for the area of a polar curve is given by
A=θ1θ212r2dθA = \int\limits_{\theta 1}^{\theta 2} {\dfrac{1}{2}{r^2}d\theta }
Squaring both sides of the given curve
i.e. r=2sinθr = 2\sin \theta
r2=4sin2θ\Rightarrow {r^2} = 4{\sin ^2}\theta
Therefore, the area of the given curve=0π12r2dθ= \int\limits_0^\pi {\dfrac{1}{2}{r^2}d\theta }
On Substituting the value of r, we get,
=0π4sin2θ2dθ= \int\limits_0^\pi {\dfrac{{4{{\sin }^2}\theta }}{2}d\theta }
=0π2sin2θdθ= \int\limits_0^\pi {2{{\sin }^2}\theta d\theta } ………..(1)
Using the double angle formula
i.e. cos2x=12sin2x\cos 2x = 1 - 2{\sin ^2}x
now, finding the value of sin2x{\sin ^2}x
2sin2x=1cos2x2{\sin ^2}x = 1 - \cos 2x
Dividing the equation by 2
sin2x=12cos2x2{\sin ^2}x = \dfrac{1}{2} - \dfrac{{\cos 2x}}{2}
On substituting the value of sin2x{\sin ^2}x in (1) we get,
=0π2(12cos2θ2)dθ= \int\limits_0^\pi {2\left( {\dfrac{1}{2} - \dfrac{{\cos 2\theta }}{2}} \right)d\theta }
On Simplifying the brackets, we get,
=0π(1cos2θ)dθ= \int\limits_0^\pi {(1 - \cos 2\theta )d\theta }
Now, using αb(A+B)dx=αb(A)dx+αb(B)dx\int\limits_\alpha ^b {(A + B)dx} = \int\limits_\alpha ^b {(A)dx} + \int\limits_\alpha ^b {(B)dx} , we get,
=0π1dθ0πcos2θdθ= \int\limits_0^\pi {1d\theta } - \int\limits_0^\pi {\cos 2\theta d\theta }
Now using αbxndx=xn+1n+1ab\int\limits_\alpha ^b {{x^n}dx} = \left| {\dfrac{{{x^{n + 1}}}}{{n + 1}}} \right|_a^band αbcosnxdx=sinnxabn\int\limits_\alpha ^b {\cos nxdx} = \dfrac{{\left| {\sin nx} \right|_a^b}}{n}, we get,
=θ0πsin2θ0π2= \left| \theta \right|_0^\pi - \dfrac{{\left| {\sin 2\theta } \right|_0^\pi }}{2}
Now on simplifying the limits, we get,
=(π0)(sin2πsin0)2= \left( {\pi - 0} \right) - \dfrac{{\left( {\sin 2\pi - \sin 0} \right)}}{2}
As, sin2π=0\sin 2\pi = 0, we get,
=π= \pi
Hence, the area of the polar curve,r=2sinθr = 2\sin \theta from 0θπ0 \leqslant \theta \leqslant \pi is π\pi .

Note: Most of the people just integrate r with the given limits of the variable
i.e. A=αbrdθA = \int\limits_\alpha ^b {rd\theta } , but this formula is wrong and won’t lead towards the correct answer, for any of the questions so avoid using this formula directly for the area of any of the polar curves.
Let simply using this formula,
Substituting the value of r and the limits
A=0π2sinθdθ\Rightarrow A = \int\limits_0^\pi {2\sin \theta d\theta }
Using absinxdx=cosxab\int\limits_a^b {\sin xdx} = \left| { - \cos x} \right|_a^b
A=2cosθ0π\Rightarrow A = \left| { - 2\cos \theta } \right|_0^\pi
Simplifying the limits
A=2(cosπcos0)\Rightarrow A = - 2(\cos \pi - \cos 0)
Substituting the value of cosπ=1\cos \pi = - 1and cos0=1\cos 0 = 1
A=4\Rightarrow A = 4
Therefore we can see as the results are not the same, hence this is the incorrect way to find the area of the polar curves so avoid using this formula.