Solveeit Logo

Question

Mathematics Question on Vector Algebra

Find the area of the parallelogram whose adjacent sides are determined by the vector a=i^j^+3k^\vec{a}=\hat{i}-\hat{j}+3\hat{k} and b=2i^7j^+k^.\vec{b}=2\hat{i}-7\hat{j}+\hat{k}.

Answer

The area of the parallelogram whose adjacent sides are a\vec{a} and b\vec{b} is |a×b\vec{a}\times\vec{b}|
Adjacent sides are given as:
a=i^j^+3k^\vec{a}=\hat{i}-\hat{j}+3\hat{k} and b=2i^7j^+k^.\vec{b}=2\hat{i}-7\hat{j}+\hat{k}.
a×b\vec{a}\times\vec{b} =\begin{vmatrix} \hat{ i}& \hat{j} & \hat{k}\\\ 1 & -1 & 3\\\2&-7&1 \end{vmatrix}$$=\hat{i}(-1+21)-\hat{j}(1-6)+\hat{k}(-7+2)=20\hat{i}+5\hat{j}-5\hat{k}
|a×b\vec{a}\times\vec{b}|=202+52+52=400+25+25=450=152=\sqrt{20^{2}+5^{2}+5^{2}}=\sqrt{400+25+25}=\sqrt{450}=15\sqrt{2}
Hence,the area of the given parallelogram is 15√2square units.