Question
Mathematics Question on Vector Algebra
Find the area of the parallelogram whose adjacent sides are determined by the vector a=i^−j^+3k^ and b=2i^−7j^+k^.
Answer
The area of the parallelogram whose adjacent sides are a and b is |a×b|
Adjacent sides are given as:
a=i^−j^+3k^ and b=2i^−7j^+k^.
∴a×b =\begin{vmatrix} \hat{ i}& \hat{j} & \hat{k}\\\ 1 & -1 & 3\\\2&-7&1 \end{vmatrix}$$=\hat{i}(-1+21)-\hat{j}(1-6)+\hat{k}(-7+2)=20\hat{i}+5\hat{j}-5\hat{k}
|a×b|=202+52+52=400+25+25=450=152
Hence,the area of the given parallelogram is 15√2square units.