Solveeit Logo

Question

Mathematics Question on Application of derivatives

Find the area of the largest isosceles triangle having perimeter 1818 metres.

A

939\sqrt{3}

B

838\sqrt{3}

C

434\sqrt{3}

D

737\sqrt{3}

Answer

939\sqrt{3}

Explanation

Solution

Let AA be the area of the triangle when one of its equal sides is xx so that the base =18xx=182x= 18 - x - x = 18 - 2x, 92<x<9\frac{9}{2} < x < 9 (x>0,182x>0\because x > 0, 18 - 2x > 0 and x+x>182xx + x > 18 - 2x as the sum of two sides > third side) A=9(9x)(9x)[9(182x)]A = \sqrt{ 9 \left(9 -x\right) \left(9 - x \right)\left[ 9 - \left( 1 8 - 2x\right)\right]}, 92<x<9\frac{9}{2} < x < 9 (Heron's method) A=3(9x)2x9\Rightarrow A = 3\left(9-x\right)\sqrt{2x - 9}, x(92,9)x\in \left(\frac{9}{2}, 9\right) dAdx=3((9x)122x92+2x9(1))\therefore \frac{dA}{dx} = 3\left( \left(9-x\right)\cdot \frac{1}{2\sqrt{2x-9}}\cdot2+\sqrt{2x - 9}\left(-1\right)\right) =3(9x2x+92x9)= 3\left(\frac{9-x-2x+9}{\sqrt{2x-9}} \right) =9(6x)2x9 = \frac{9\left(6-x\right)}{\sqrt{2x-9}}, x(92,9)x\in \left(\frac{9}{2}, 9\right) Now, dAdx=0\frac{dA}{dx} = 0 9(6x)2x9=0\Rightarrow \frac{9\left(6-x\right)}{\sqrt{2x-9}} = 0 6x=0\Rightarrow 6 - x = 0 x=6\Rightarrow x = 6 When x<6x < 6 slightly, then dAdx=+ve(+ve)+ve=+ve\frac{dA}{dx} = \frac{+ve\left(+ ve\right)}{+ve} = +ve and when x>6x > 6 slightly, then dAdx=+ve(ve)+ve=ve\frac{dA}{dx} = \frac{+ve\left(- ve\right)}{+ve} =- ve dAdx\Rightarrow \frac{dA}{dx} changes sign from +ve+ve to ve-ve as we move from shghly <6< 6 to shghtly >6> 6 through 66 \Rightarrow A has a local maximum at x=6x = 6. But, A=3(9x)2x9A = 3\left(9-x\right) \sqrt{2x - 9} is continuous in (92,9)\left(\frac{9}{2}, 9\right) and has only one extremum (at x=6x = 6), therefore, x=6x = 6 is the point of absolute maximum of AA. Hence, AA is maximum when x=6x = 6 and maximum value of A=3(96)2×69=93A = 3\left(9 - 6\right)\sqrt{2 \times 6 - 9} = 9\sqrt{3} (Note that when AA is maximum, the base of the triangle =182×6=6= 1 8 - 2 \times 6 = 6 i.e. the triangle is equilateral)