Solveeit Logo

Question

Mathematics Question on applications of integrals

Find the area of the circle 4x2+4y2=9 which is interior to the parabola x2=4y

Answer

The required area is represented by the shaded area OBCDO.

Area of the circle 4x2+4y2=9 which is interior to the parabola x2=4y

Solving the given equation of circle,4x2+4y2=9,and parabola,x2=4y,we obtain the

point of intersection as B(2,12)(\sqrt2,\frac{1}{2})and D (2,12).(-\sqrt2,\frac{1}{2}).

It can be observed that the required area is symmetrical about y-axis.

∴Area OBCDO=2×Area OBCO

We draw BM perpendicular to OA.

Therefore,the coordinates of M are (2,0)(\sqrt2,0).

Therefore,Area OBCO=Area OMBCO-Area OMBO

=02(94x2)4dx02x24dx∫_0^{\sqrt2}\sqrt{\frac{(9-4x^2)}{4}}dx-∫_0^{\sqrt2}\sqrt{\frac{x^2}{4}}dx

=120294x2dx1402x2dx\frac{1}{2}∫_0^{√2}\sqrt{9-4x^2}\,dx-\frac{1}{4}∫_0^{\sqrt2}x^2dx

=14[x94x2+92sin12x3]0214[x33]02\frac{1}{4}\bigg[x\sqrt{9-4x^2}+\frac{9}{2}sin^{-1}\frac{2x}{3}\bigg]_0^{\sqrt2}-\frac{1}{4}\bigg[\frac{x^3}{3}\bigg]_0^{\sqrt2}

=14[298+92sin1223]112(2)3\frac{1}{4}[\sqrt{2}\sqrt{9-8}+\frac{9}{2}sin^{-1}\frac{2√2}{3}]-\frac{1}{12}(\sqrt2)^3

=24+98sin122326\frac{\sqrt2}{4}+\frac{9}{8}sin^{-1}\frac{2\sqrt2}{3}-\frac{\sqrt2}{6}

=212+98sin1223\frac{\sqrt2}{12}+\frac{9}{8}sin^{-1}\frac{2\sqrt2}{3}

=12(26+94sin1223)\frac{1}{2}(\frac{\sqrt2}{6}+\frac{9}{4}sin^{-1}\frac{2\sqrt2}{3})

Therefore,the required area OBCDO is

(2×12[26+94sin1223])=[26+94sin1223](2×\frac{1}{2}[\frac{\sqrt2}{6}+\frac{9}{4}sin^{-1}\frac{2\sqrt2}{3}])=[\frac{\sqrt2}{6}+\frac{9}{4}sin^{-1}\frac{2\sqrt2}{3}]units.