Solveeit Logo

Question

Question: Find the area of one petal of \(r = 6\sin 2\theta \)?...

Find the area of one petal of r=6sin2θr = 6\sin 2\theta ?

Explanation

Solution

Given the value of polar coordinates. We have to find the area of one petal where there are four petals traced by the curve, one petal in each quadrant. Find the limit of integration, Then find the area at the angular position θ\theta by substituting the values into the formula of area of polar coordinates.

Formula used:
The area in the polar coordinates is given as:
A=ab12r2dθA = \int_a^b {\dfrac{1}{2}{r^2}d\theta }
The general solution of the equation, sinx=0\sin x = 0 is given as:
x=nπx = n\pi

Complete step by step answer:
Let us assume that f(θ)=r=6sin2θf\left( \theta \right) = r = 6\sin 2\theta

First, we will find the value of θ\theta by substituting f(θ)=0f\left( \theta \right) = 0

6sin2θ=0 \Rightarrow 6\sin 2\theta = 0

sin2θ=0 \Rightarrow \sin 2\theta = 0

Now, we will find the general solution of the equation for θ\theta by substituting n=0,1,2,n = 0,1,2, \ldots

2θ=0,π,2π,\Rightarrow 2\theta = 0,\pi ,2\pi , \ldots

Now, divide both sides by 22.

θ=0,π2,2π2,\Rightarrow \theta = 0,\dfrac{\pi }{2},\dfrac{{2\pi }}{2}, \ldots

θ=0,π2,π,\Rightarrow \theta = 0,\dfrac{\pi }{2},\pi , \ldots

Now we will determine the limits for the single petal which is equal to one quadrant.

a=0;b=π2 \Rightarrow a = 0;b = \dfrac{\pi }{2}

Now, substitute the limits and value of rr into the formula of area.

A=0π212[f(θ)]2dθ\Rightarrow A = \int_0^{\dfrac{\pi }{2}} {\dfrac{1}{2}{{\left[ {f\left( \theta \right)} \right]}^2}d\theta }

Now, substitute the value of f(θ)f\left( \theta \right) into the RHS of the expression.

A=0π212(6sin2θ)2dθ\Rightarrow A = \int_0^{\dfrac{\pi }{2}} {\dfrac{1}{2}{{\left( {6\sin 2\theta } \right)}^2}d\theta }

On simplifying the expression, we get:

A=0π212×62(sin2θ)2dθ\Rightarrow A = \int_0^{\dfrac{\pi }{2}} {\dfrac{1}{2} \times {6^2}{{\left( {\sin 2\theta } \right)}^2}d\theta }

A=0π23×6(sin2θ)2dθ\Rightarrow A = \int_0^{\dfrac{\pi }{2}} {3 \times 6{{\left( {\sin 2\theta } \right)}^2}d\theta }

A=180π2sin22θdθ\Rightarrow A = 18\int_0^{\dfrac{\pi }{2}} {{{\sin }^2}2\theta d\theta }

Now, apply the trigonometric identity, sin22x=12(1cos4x){\sin ^2}2x = \dfrac{1}{2}\left( {1 - \cos 4x} \right)to the integral.

A=180π212(1cos4θ)dθ\Rightarrow A = 18\int_0^{\dfrac{\pi }{2}} {\dfrac{1}{2}\left( {1 - \cos 4\theta } \right)d\theta }

Now move the constant term out of the integral and cancel out the common term.

A=18×120π2(1cos4θ)dθ\Rightarrow A = 18 \times \dfrac{1}{2}\int_0^{\dfrac{\pi }{2}} {\left( {1 - \cos 4\theta } \right)d\theta }

A=90π2(1cos4θ)dθ\Rightarrow A = 9\int_0^{\dfrac{\pi }{2}} {\left( {1 - \cos 4\theta } \right)d\theta }

Now, integrate the expression.

A=90π21dθcos4θdθ\Rightarrow A = 9\int_0^{\dfrac{\pi }{2}} {1 \cdot d\theta - \cos 4\theta d\theta }

A=9[θ14sin4θ]0π2 \Rightarrow A = 9\left[ {\theta - \dfrac{1}{4}\sin 4\theta } \right]_0^{\dfrac{\pi }{2}}

Now, substitute the values of limits into the expression and subtract the lower limit expression from upper limit expression.

A=9[(π214sin4×π2)(014sin4×0)] \Rightarrow A = 9\left[ {\left( {\dfrac{\pi }{2} - \dfrac{1}{4}\sin 4 \times \dfrac{\pi }{2}} \right) - \left( {0 - \dfrac{1}{4}\sin 4 \times 0} \right)} \right]

Simplify the expression, we get:

A=9[(π214sin2π)(14sin0)] \Rightarrow A = 9\left[ {\left( {\dfrac{\pi }{2} - \dfrac{1}{4}\sin 2\pi } \right) - \left( { - \dfrac{1}{4}\sin 0} \right)} \right]

Substitute sin2π=0\sin 2\pi = 0 and sin0=0\sin 0 = 0into the expression.

A=9[(π214×0)(14×0)] \Rightarrow A = 9\left[ {\left( {\dfrac{\pi }{2} - \dfrac{1}{4} \times 0} \right) - \left( { - \dfrac{1}{4} \times 0} \right)} \right]

A=9[π2(0)] \Rightarrow A = 9\left[ {\dfrac{\pi }{2} - \left( 0 \right)} \right]

A=9π2 \Rightarrow A = \dfrac{{9\pi }}{2}

Hence the area of one petal of the curve is 9π2\dfrac{{9\pi }}{2}

Note: When the trigonometric function is given, apply the integration with the limits equal to the boundary of one petal and substitute the values into the formula.