Solveeit Logo

Question

Question: Find the area in(sq. units) of the region bounded by the curve \(y = f\left( x \right){\text{ and y}...

Find the area in(sq. units) of the region bounded by the curve y=f(x) and y=g(x)y = f\left( x \right){\text{ and y}} = g\left( x \right) between the lines 2x=1 and 2x=32x = 1{\text{ and }}2x = \sqrt 3 , when f(x) and g(x)f\left( x \right){\text{ and }}g\left( x \right) are given as:
f\left( x \right) = \left\\{ \begin{gathered} x,0 \leqslant x < \dfrac{1}{2} \\\ \dfrac{1}{2},x = \dfrac{1}{2} \\\ 1 - x,\dfrac{1}{2} < x \leqslant 1 \\\ \end{gathered} \right\\}{\text{ }} and
g(x)=(x12)2,xR{\text{g}}\left( x \right) = {\left( {x - \dfrac{1}{2}} \right)^2},x \in R
A. 13+34\dfrac{1}{3} + \dfrac{{\sqrt 3 }}{4}
B. 1234\dfrac{1}{2} - \dfrac{{\sqrt 3 }}{4}
C. 12+34\dfrac{1}{2} + \dfrac{{\sqrt 3 }}{4}
D. 3413\dfrac{{\sqrt 3 }}{4} - \dfrac{1}{3}

Explanation

Solution

First, plot the graph of the given equations and make a rough sketch of the area to be founded.
Then find the limits within which curve is bounded i.e. x=a to x= b. In this question the limits are already given i.e. x=12 x = \dfrac{1}{2}{\text{ }}to  x=32{\text{ }}x = \dfrac{{\sqrt 3 }}{2}. These limits will become the limits for the integration.
The area bounded between two curves is given by:
x=ax=b(y2y1)dx\int\limits_{x = a}^{x = b} {\left( {{y_2} - {y_1}} \right)dx}
Where, y2y_2 represents the upper bounding curve and y1y_1 represents the lower bounding curve.

Complete step by step solution:
The given equations are:
y= x y = {\text{ }}x{\text{ }}when 0x<12 (i){\text{0}} \leqslant x < \dfrac{1}{2}{\text{ }} - - - (i)
y = 12{\text{y = }}\dfrac{1}{2} when x=12 - - - - - - - - - - - - - - - - - - - - - - - - - - (ii)x = \dfrac{1}{2}{\text{ - - - - - - - - - - - - - - - - - - - - - - - - - - }}\left( {ii} \right)
y = 1x{\text{y = }}1 - x when 12<x1 - - - - - - - - - - - - - - - - - - (iii)\dfrac{1}{2} < x \leqslant 1{\text{ - - - - - - - - - - - - - - - - - - }}\left( {iii} \right)
And  y=(x12)2 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - (iv){\text{ }}y = {\left( {x - \dfrac{1}{2}} \right)^2}{\text{ - - - - - - - - - - - - - - - - - - - - - - - - - - - - - }}\left( {iv} \right)
Equation (i) represents a straight line passing through origin, and making an angle of 4545^\circ with x-axis,
between x=0x = 0 and x=12x = \dfrac{1}{2}.
Equation (ii) represents the point (12,12)\left( {\dfrac{1}{2},\dfrac{1}{2}} \right).
Equation (iii) represents a straight line.
Putting y=0y = 0 and x=0x = 0 respectively in equation (iii), we obtain:
x=1x = 1 and y=1y = 1 respectively.
So, the straight line passes through points (1,0)\left( {1,0} \right)and (0,1)\left( {0,1} \right), but required portion is only between x=12x = \dfrac{1}{2}and x=1x = 1.
Equation (iv) represents a parabola having vertex at (12,0)\left( {\dfrac{1}{2},0} \right) , and axis along the positive y-axis.
The area bounded by these curves between lines 2x=12x = 1and 2x=32x = \sqrt 3 is shown below.

In order to find the point of intersection of line and parabola we solve the equations (iii) and (iv) simultaneously.
From (iii) we get, y=1xy = 1 - x
Putting this value of y in (iv), we get:
1x=(x12)21 - x = {\left( {x - \dfrac{1}{2}} \right)^2}
1x=(2x12)21 - x = {\left( {\dfrac{{2x - 1}}{2}} \right)^2}
1x=(2x1)241 - x = \dfrac{{{{\left( {2x - 1} \right)}^2}}}{4}
Using the identity (ab)2=a2+b22ab{(a - b)^2} = {a^2} + {b^2} - 2ab, we have
1x=4x24x+14\Rightarrow 1 - x = \dfrac{{4{x^2} - 4x + 1}}{4}
Cross multiplying we have,
44x=4x24x+1\Rightarrow 4 - 4x = 4{x^2} - 4x + 1
Cancelling ‘4x’ we have,
4x2=3\Rightarrow 4{x^2} = 3
Divide by 4 on both sides of the equation
x2=34\Rightarrow {x^2} = \dfrac{3}{4}
Taking square root on both side we have,
x=32\Rightarrow x = \dfrac{{\sqrt 3 }}{2}
Putting x=32x = \dfrac{{\sqrt 3 }}{2} , in equation (iii)
y=132\Rightarrow y = 1 - \dfrac{{\sqrt 3 }}{2}
There intersection point is:
B(32,132)B\left( {\dfrac{{\sqrt 3 }}{2},1 - \dfrac{{\sqrt 3 }}{2}} \right)
Now, we have to find the area of the bounded region ABDA.
Area of region ABDA:
= area under line AB – area under the parabola between x=12x = \dfrac{1}{2} and x=32x = \dfrac{{\sqrt 3 }}{2}
Area bounded between two curves is given by:
x1x2(y2y1)dx\int\limits_{{x_1}}^{{x_2}} {\left( {{y_2} - {y_1}} \right)dx}
Where, y2 represents the upper bounding curve and y1 represents the lower bounding curve.
Here, upper bounding curve is:
y2=1x{y_2} = 1 - x
and lower bounding curve is:
y1=(x12)2{y_1} = {\left( {x - \dfrac{1}{2}} \right)^2}
Area of region ABDA after substituting the values we have,
=1232((1x)(x12)2)dx= \int\limits_{\dfrac{1}{2}}^{\dfrac{{\sqrt 3 }}{2}} {\left( {\left( {1 - x} \right) - {{\left( {x - \dfrac{1}{2}} \right)}^2}} \right)dx}
Using the identity (ab)2=a2+b22ab{(a - b)^2} = {a^2} + {b^2} - 2ab, we have
=1232(1xx2+x14)dx= \int\limits_{\dfrac{1}{2}}^{\dfrac{{\sqrt 3 }}{2}} {\left( {1 - x - {x^2} + x - \dfrac{1}{4}} \right)dx}
Cancelling ‘x’ we get:
=1232(34x2)dx= \int\limits_{\dfrac{1}{2}}^{\dfrac{{\sqrt 3 }}{2}} {\left( {\dfrac{3}{4} - {x^2}} \right)dx}
integrating we have,
=[3x4x33]1232= \left[ {\dfrac{{3x}}{4} - \dfrac{{{x^3}}}{3}} \right]_{\dfrac{1}{2}}^{\dfrac{{\sqrt 3 }}{2}}
Applying upper and lower bond we have,
=[3383324][38124]= \left[ {\dfrac{{3\sqrt 3 }}{8} - \dfrac{{3\sqrt 3 }}{{24}}} \right] - \left[ {\dfrac{3}{8} - \dfrac{1}{{24}}} \right]
[933324][9124]\Rightarrow \left[ {\dfrac{{9\sqrt 3 - 3\sqrt 3 }}{{24}}} \right] - \left[ {\dfrac{{9 - 1}}{{24}}} \right]
[3338][724]\Rightarrow \left[ {\dfrac{{3\sqrt 3 - \sqrt 3 }}{8}} \right] - \left[ {\dfrac{7}{{24}}} \right]
[3(31)8][724]\Rightarrow \left[ {\dfrac{{\sqrt 3 (3 - 1)}}{8}} \right] - \left[ {\dfrac{7}{{24}}} \right]
[238][724]\Rightarrow \left[ {\dfrac{{2\sqrt 3 }}{8}} \right] - \left[ {\dfrac{7}{{24}}} \right]
3413\Rightarrow \dfrac{{\sqrt 3 }}{4} - \dfrac{1}{3}

So, the correct answer is Option D.

Note: If the functions give are in the form of x=f(y)x = f\left( y \right) and x=g(y)x = g\left( y \right) and bounded by lines y=cy = c and y=dy = d then area Is given by formula:
=cd(f(y)g(y))dy= \int\limits_c^d {\left( {f(y) - g\left( y \right)} \right)dy} where f(y)>g(y)f\left( y \right) > g\left( y \right).