Solveeit Logo

Question

Mathematics Question on applications of integrals

Find the area enclosed between the parabola y2=4ax and the line y=mx

Answer

The area enclosed between the parabola,y2=4ax,and the line,y=mx,is represented

by the shaded area OABO as

The points of intersection of both the curves are(0,0)and(4a/m2,4a/m).

We draw AC perpendicular to x-axis.

∴Area OABO=Area OCABO-Area(ΔOCA)

=

\int_{0}^{\frac{4a}{m^3}} 2\sqrt{ax} \,dx$$$$-\int_{0}^{\frac{4a}{m^2}} mx \,dx

=2√a[x3232\frac{x^{\frac{3}{2}}}{\frac{3}{2}}]4a/m20-m[x22\frac{x^2}{2}]4a/m2 0

=43\frac 43√a(4am2)3/2(\frac{4a}{m^2})^{3/2}-m2\frac m2[(4am2\frac{4a}{m^2})2]

=32a23m3\frac{32a^2}{3m^3}-m2\frac m2(16a2m4\frac {16a^2}{m^4})

=32a23m3\frac{32a^2}{3m^3}-8a23m3\frac{8a^2}{3m^3}

=8a23m3\frac{8a^2}{3m^3}units.