Solveeit Logo

Question

Question: Find the area bounded by x = 1/2, x = 2, y = log<sub>e</sub> x and y = 2<sup>x</sup>-...

Find the area bounded by x = 1/2, x = 2, y = loge x and y = 2x-

A

42log2\frac { 4 - \sqrt { 2 } } { \log 2 }+ 52\frac { 5 } { 2 }log 2 + 32\frac { 3 } { 2 }

B

42log2\frac { 4 - \sqrt { 2 } } { \log 2 }52\frac { 5 } { 2 }log 2 + 32\frac { 3 } { 2 }

C

4+2log2\frac { 4 + \sqrt { 2 } } { \log 2 }52\frac { 5 } { 2 }log 2 + 32\frac { 3 } { 2 }

D

None

Answer

42log2\frac { 4 - \sqrt { 2 } } { \log 2 }52\frac { 5 } { 2 }log 2 + 32\frac { 3 } { 2 }

Explanation

Solution

Given curves are

y = log x ... (i)

y = 2x ... (ii)

So, the required area

= = 1/22(2xlogx)dx\left| \int _ { 1 / 2 } ^ { 2 } \left( 2 ^ { x } - \log x \right) d x \right|

=

= 42log2(2log22)+(12log1212)\left| \frac { 4 - \sqrt { 2 } } { \log 2 } - ( 2 \log 2 - 2 ) + \left( \frac { 1 } { 2 } \log \frac { 1 } { 2 } - \frac { 1 } { 2 } \right) \right|

= 42log2\frac { 4 - \sqrt { 2 } } { \log 2 }52\frac { 5 } { 2 }log 2 + 32\frac { 3 } { 2 }.