Solveeit Logo

Question

Question: Find the area bounded by the curves x = a cost, y = b sin t in the first quadrant...

Find the area bounded by the curves x = a cost, y = b sin t in the first quadrant

A

πab4\frac { \pi a b } { 4 }

B

πa2b4\frac { \pi a ^ { 2 } b } { 4 }

C

πab24\frac { \pi a b ^ { 2 } } { 4 }

D

None of these

Answer

πab4\frac { \pi a b } { 4 }

Explanation

Solution

Clearly the given equation are the parametric equation of ellipse x2a2+y2b2=1\frac { x ^ { 2 } } { a ^ { 2 } } + \frac { y ^ { 2 } } { b ^ { 2 } } = 1 . Curve meet the x-axis in the first quadrant at (a,0)

∴ Required area =π20(bsint)(acost)dt= \int _ { \frac { \pi } { 2 } } ^ { 0 } ( b \sin t ) ( - a \cos t ) d t

=ab0π/2sin2tdt=(πab4)= a b \int _ { 0 } ^ { \pi / 2 } \sin ^ { 2 } t d t = \left( \frac { \pi a b } { 4 } \right) (( \because At x=0,t=π/2x = 0 , t = \pi / 2 and x=a,t=0)x = a , t = 0 )