Solveeit Logo

Question

Question: Find the area bounded by the curve y = cosx, the x-axis and the ordinates x= 0 and \(x=2\pi\)....

Find the area bounded by the curve y = cosx, the x-axis and the ordinates x= 0 and x=2πx=2\pi.

Explanation

Solution

Hint: Use the fact that the area bounded by the curve y = f(x), the x-axis and the ordinates x = a and x= b is given by abf(x)dx\int_{a}^{b}{\left| f\left( x \right) \right|dx}. Hence the required area is given by 02πcosxdx\int_{0}^{2\pi }{\left| \cos x \right|dx}. Draw the graph of y=cosxy=\cos x and observe that in the intervals (0,π2)\left( 0,\dfrac{\pi }{2} \right) and (3π2,2π)\left( \dfrac{3\pi }{2},2\pi \right) cosx is positive and in the interval (π2,3π2)\left( \dfrac{\pi }{2},\dfrac{3\pi }{2} \right) cosx is negative. Use the fact that c(a,b)abf(x)dx=acf(x)dx+cbf(x)dx\forall c\in \left( a,b \right)\int_{a}^{b}{f\left( x \right)dx}=\int_{a}^{c}{f\left( x \right)dx}+\int_{c}^{b}{f\left( x \right)dx}. Hence prove that 02πcosxdx=0π2cosxdxπ23π2cosxdx+3π22πcosxdx\int_{0}^{2\pi }{\left| \cos x \right|dx}=\int_{0}^{\dfrac{\pi }{2}}{\cos xdx}-\int_{\dfrac{\pi }{2}}^{\dfrac{3\pi }{2}}{\cos xdx}+\int_{\dfrac{3\pi }{2}}^{2\pi }{\cos xdx}. Hence find the required area.

Complete step-by-step answer:

We know that the area bounded by the curve y = f(x), the x-axis and the ordinates x = a and x= b is given by abf(x)dx\int_{a}^{b}{\left| f\left( x \right) \right|dx}.

Hence, we have

Required area =02πcosxdx=\int_{0}^{2\pi }{\left| \cos x \right|dx}

Now from the graph, it is evident that in the intervals [0, A] and [B, C] cosx is positive, and in the interval [A, B] cosx is negative.Here A=π2,B=3π2,C=2πA=\dfrac{\pi }{2},B=\dfrac{3\pi }{2},C=2\pi

Hence, we have in the interval [0,A] and [B,C] ,|cosx| = cosx and in the interval [A,B] ,|cosx|=-cosx

Now know that c(a,b)abf(x)dx=acf(x)dx+cbf(x)dx\forall c\in \left( a,b \right)\int_{a}^{b}{f\left( x \right)dx}=\int_{a}^{c}{f\left( x \right)dx}+\int_{c}^{b}{f\left( x \right)dx}. Hence, we have

02πcosxdx=0π2cosxdx+π23π2cosxdx+3π22πcosxdx\int_{0}^{2\pi }{\left| \cos x \right|dx}=\int_{0}^{\dfrac{\pi }{2}}{\left| \cos x \right|dx}+\int_{\dfrac{\pi }{2}}^{\dfrac{3\pi }{2}}{\left| \cos x \right|dx}+\int_{\dfrac{3\pi }{2}}^{2\pi }{\left| \cos x \right|dx}

Now, we know that in the intervals (0,π2)\left( 0,\dfrac{\pi }{2} \right) and (3π2,2π),cosx=cosx\left( \dfrac{3\pi }{2},2\pi \right),\left| \cos x \right|=\cos x and in the interval (π2,3π2),cosx=cosx\left( \dfrac{\pi }{2},\dfrac{3\pi }{2} \right),\left| \cos x \right|=-\cos x.

Hence, we have 02πcosxdx=0π2cosxdxπ23π2cosxdx+3π22πcosxdx\int_{0}^{2\pi }{\left| \cos x \right|dx}=\int_{0}^{\dfrac{\pi }{2}}{\cos xdx}-\int_{\dfrac{\pi }{2}}^{\dfrac{3\pi }{2}}{\cos xdx}+\int_{\dfrac{3\pi }{2}}^{2\pi }{\cos xdx}.

Hence, we have

Total area =0π2cosxdx+π23π2cosxdx+3π22πcosxdx=\int_{0}^{\dfrac{\pi }{2}}{\left| \cos x \right|dx}+\int_{\dfrac{\pi }{2}}^{\dfrac{3\pi }{2}}{\left| \cos x \right|dx}+\int_{\dfrac{3\pi }{2}}^{2\pi }{\left| \cos x \right|dx}

Now, we know that cosxdx=sinx\int{\cos xdx}=\sin x

Hence, we have

Total area $$\begin{aligned}

& =\left( \left. \sin x \right|{0}^{\dfrac{\pi }{2}} \right)-\left( \left. \sin x \right|{\dfrac{\pi }{2}}^{\dfrac{3\pi }{2}} \right)+\left( \left. \sin x \right|_{\dfrac{3\pi }{2}}^{2\pi } \right)=\left( \sin \dfrac{\pi }{2}-0 \right)-\left( \sin \left( \dfrac{3\pi }{2} \right)-\sin \left( \dfrac{\pi }{2} \right) \right)+\left( \sin \left( 2\pi \right)-\sin \left( \dfrac{3\pi }{2} \right) \right) \\

& =\left( 1-0 \right)-\left( -1-1 \right)-\left( 0-1 \right)=1+2+1=4 \\

\end{aligned}$$

Hence the total area = 4 square units

Note: [1] Alternative Solution: Best method

As is evident from the graph the total area is four times the area in the interval [0, A]

Hence, we have

Total area =4.0π2cosxdx=4(sin(π2)sin(0))=4=4\int_{.0}^{\dfrac{\pi }{2}}{\cos xdx}=4\left( \sin \left( \dfrac{\pi }{2} \right)-\sin \left( 0 \right) \right)=4, which is the same as obtained above.