Solveeit Logo

Question

Mathematics Question on applications of integrals

Find the area bounded by the curve x2=4y and the line x=4y-2

Answer

The area bounded by the curve,x2=4y,and line,x=4y-2,is represented by the

shaded area OBAO.

Area bounded by the curve x2=4y and the line x=4y-2

Let A and B be the points of intersection of the line and parabola.

Coordinates of point A are(1,14).(-1,\frac{1}{4}).

Coordinates of point B are(2,1).

We draw AL and BM perpendicular to x-axis.

It can be observed that,

Area OBAO=Area OBCO+Area OACO...(1)

Then,Area OBCO=Area OMBC-Area OMBO

=02x+24dx02x24dx∫_0^2 \frac{x+2}{4} dx-∫_0^2 \frac{x^2}{4}dx

=14[x22+2x]0214[x33]02\frac{1}{4}[\frac{x^2}{2}+2x]_0^2-\frac{1}{4}[\frac{x^3}{3}]_0^2

=14[2+4]14[83]\frac{1}{4}[2+4]-\frac{1}{4}[\frac{8}{3}]

=3223\frac{3}{2}-\frac{2}{3}

=56\frac{5}{6}

Similarly,Area OACO=Area OLAC-Area OLAO

=01x+24dx01x24dx∫_0^{-1} \frac{x+2}{4}dx-∫_0^{-1} \frac{x^2}{4}dx

=14[x22+2x]01[14x33]10\frac{1}{4}[\frac{x^2}{2}+2x]_0^{-1} -[\frac{1}{4}\frac{x^3}{3}]_{-1}^0

=-14[(1)22+2(1)][14((1)33)]\frac{1}{4}[\frac{(-1)^2}{2}+2(-1)]-[-\frac{1}{4}((-\frac{1)^3}{3})]

=-14[122]112\frac{1}{4}[\frac{1}{2}-2]-\frac{1}{12}

=1218112\frac{1}{2}-\frac{1}{8}-\frac{1}{12}

=724\frac{7}{24}

Therefore,required area=(56+724)(\frac{5}{6}+\frac{7}{24})= 98\frac{9}{8} units.