Solveeit Logo

Question

Mathematics Question on applications of integrals

Find the area bounded by the curve x=2yy2x = 2 - y - y^2 and y-axis.

A

92-\frac{9}{2}

B

92\frac{9}{2}

C

99

D

9-9

Answer

92\frac{9}{2}

Explanation

Solution

Put 2yy2=02 - y - y^2 = 0 y=1,2\Rightarrow y = 1, - 2 This means, the curve intersects the y-axis at y=1y = 1 and y=2y = - 2. Hence required area =21xdy= \int\limits^{1}_{-2} xdy =21(2yy2)dy= \int\limits^{1}_{-2} \left(2-y-y^{2}\right)dy =[2yy22y33]21=92= \left[2y-\frac{y^{2}}{2}-\frac{y^{3}}{3}\right]^{1}_{-2} = \frac{9}{2} s units