Solveeit Logo

Question

Question: Find the area between the curve \(y=\dfrac{x}{\pi }+2{{\sin }^{2}}x\), the x-axis and the ordinates ...

Find the area between the curve y=xπ+2sin2xy=\dfrac{x}{\pi }+2{{\sin }^{2}}x, the x-axis and the ordinates x= 0 and x=πx=\pi.

Explanation

Solution

Hint: Use the fact that if f(x)0f\left( x \right)\ge 0 in the interval [a,b] then the area bounded by the curve y=f(x) and the x-axis and the ordinates x = a and x = b is given by abf(x)dx\int_{a}^{b}{f\left( x \right)dx}. Observe that in the interval [0,π]\left[ 0,\pi \right], we have xπ+2sin2x0\dfrac{x}{\pi }+2{{\sin }^{2}}x\ge 0 and hence the area bounded by the curve y=xπ+2sin2xy=\dfrac{x}{\pi }+2{{\sin }^{2}}x, the x-axis and the ordinates x = 0 and x=πx=\pi is given by 0π(xπ+2sin2x)dx\int_{0}^{\pi }{\left( \dfrac{x}{\pi }+2{{\sin }^{2}}x \right)dx}. Evaluate the integral and hence find the required area.

Complete step-by-step answer:

Consider the vertical strip GHJI
We have GI = y and IJ = dx
Hence the area of the strip is ydx.
The total area will be the sum of the area of the strips between D and E.
Hence, we have
Total area =0πydx=\int_{0}^{\pi }{ydx}
We know that y=xπ+2sin2xy=\dfrac{x}{\pi }+2{{\sin }^{2}}x
Hence, we have
Total area =0π(xπ+2sin2x)dx=\int_{0}^{\pi }{\left( \dfrac{x}{\pi }+2{{\sin }^{2}}x \right)dx}
We know that ab(f(x)+g(x))dx=abf(x)dx+abg(x)dx\int_{a}^{b}{\left( f\left( x \right)+g\left( x \right) \right)dx}=\int_{a}^{b}{f\left( x \right)dx}+\int_{a}^{b}{g\left( x \right)dx}
Hence, we have
Total area =0πxπdx+0π2sin2xdx=I1+I2=\int_{0}^{\pi }{\dfrac{x}{\pi }}dx+\int_{0}^{\pi }{2{{\sin }^{2}}xdx}={{I}_{1}}+{{I}_{2}}, where I1=0πxπdx{{I}_{1}}=\int_{0}^{\pi }{\dfrac{x}{\pi }dx} and I2=0π2sin2x{{I}_{2}}=\int_{0}^{\pi }{2{{\sin }^{2}}x}
Finding the value of I1{{I}_{1}}:
We have I1=0πxπdx{{I}_{1}}=\int_{0}^{\pi }{\dfrac{x}{\pi }dx}
We know that abkf(x)dx=kabf(x)dx\int_{a}^{b}{kf\left( x \right)dx}=k\int_{a}^{b}{f\left( x \right)dx}
Hence, we have
I1=1π0πxdx{{I}_{1}}=\dfrac{1}{\pi }\int_{0}^{\pi }{xdx}
We know that xndx=xn+1n+1+C\int{{{x}^{n}}dx}=\dfrac{{{x}^{n+1}}}{n+1}+C
Hence, we have
I1=1π(x220π)=1π(π22)=π2{{I}_{1}}=\dfrac{1}{\pi }\left( \left. \dfrac{{{x}^{2}}}{2} \right|_{0}^{\pi } \right)=\dfrac{1}{\pi }\left( \dfrac{{{\pi }^{2}}}{2} \right)=\dfrac{\pi }{2}
Hence, we have I1=π2{{I}_{1}}=\dfrac{\pi }{2}
Finding the value of I2{{I}_{2}}:
We have I2=0π2sin2xdx{{I}_{2}}=\int_{0}^{\pi }{2{{\sin }^{2}}xdx}
We know that abkf(x)dx=kabf(x)dx\int_{a}^{b}{kf\left( x \right)dx}=k\int_{a}^{b}{f\left( x \right)dx}
Hence, we have
I2=20πsin2xdx{{I}_{2}}=2\int_{0}^{\pi }{{{\sin }^{2}}xdx}
We know that if f(x) = f(2a-x), then 02af(x)dx=20af(x)dx\int_{0}^{2a}{f\left( x \right)dx}=2\int_{0}^{a}{f\left( x \right)dx}
Since sin2(πx)=sin2x{{\sin }^{2}}\left( \pi -x \right)={{\sin }^{2}}x, we have
0πsin2xdx=20π2sin2xdx\int_{0}^{\pi }{{{\sin }^{2}}xdx}=2\int_{0}^{\dfrac{\pi }{2}}{{{\sin }^{2}}xdx}
Hence, we have
I2=40π2sin2x (i){{I}_{2}}=4\int_{0}^{\dfrac{\pi }{2}}{{{\sin }^{2}}x}\text{ }\left( i \right)
We know that abf(x)dx=abf(a+bx)dx\int_{a}^{b}{f\left( x \right)dx}=\int_{a}^{b}{f\left( a+b-x \right)dx}
Hence, we have
I2=40π2sin2(π2x)dx=40π2cos2xdx (ii){{I}_{2}}=4\int_{0}^{\dfrac{\pi }{2}}{{{\sin }^{2}}\left( \dfrac{\pi }{2}-x \right)dx}=4\int_{0}^{\dfrac{\pi }{2}}{{{\cos }^{2}}xdx}\text{ }\left( ii \right)
Adding equation (i) and equation (ii), we get
2I2=40π2(sin2x+cos2x)dx2{{I}_{2}}=4\int_{0}^{\dfrac{\pi }{2}}{\left( {{\sin }^{2}}x+{{\cos }^{2}}x \right)dx}
We know that sin2x+cos2x=1{{\sin }^{2}}x+{{\cos }^{2}}x=1
Hence, we have
2I2=40π21dx=4(x0π2)=4×π2=2π2{{I}_{2}}=4\int_{0}^{\dfrac{\pi }{2}}{1dx}=4\left( \left. x \right|_{0}^{\dfrac{\pi }{2}} \right)=4\times \dfrac{\pi }{2}=2\pi
Dividing both sides by 2, we get
I2=π{{I}_{2}}=\pi
Hence we have
Total area =π2+π=3π2=\dfrac{\pi }{2}+\pi =\dfrac{3\pi }{2}

Note: [1] We can calculate I2{{I}_{2}} directly using the identity sin2x=1cos2x2{{\sin }^{2}}x=\dfrac{1-\cos 2x}{2}
We have I2=20πsin2x=20π1cos2x2dx=0π(1cos2x)dx{{I}_{2}}=2\int_{0}^{\pi }{{{\sin }^{2}}x=2\int_{0}^{\pi }{\dfrac{1-\cos 2x}{2}dx=\int_{0}^{\pi }{\left( 1-\cos 2x \right)dx}}}
We know that cos2xdx=sin2x2+C\int{\cos 2x}dx=\dfrac{\sin 2x}{2}+C
Hence, we have
I2=xsin2x20π=(π0)(sin2π2sin02)=π{{I}_{2}}=\left. x-\dfrac{\sin 2x}{2} \right|_{0}^{\pi }=\left( \pi -0 \right)-\left( \dfrac{\sin 2\pi }{2}-\dfrac{\sin 0}{2} \right)=\pi , which is the same as obtained above.