Solveeit Logo

Question

Mathematics Question on Application of derivatives

Find the approximate change in the volume VV of a cube of side xx meters caused by increasing the side by 2%2\%.

A

1.06x3m31.06x^3\,m^3

B

1.26x3m31.26x^3\,m^3

C

2.50x3m32.50x^3\,m^3

D

0.06x3m30.06x^3\,m^3

Answer

0.06x3m30.06x^3\,m^3

Explanation

Solution

It is given that Δxx×100=2\frac{\Delta x}{x} \times 100 =2 We have, V=x3V = x^{3} dVdx=3x2\Rightarrow \frac{dV}{dx} = 3x^{2} ΔV=dVdx×Δx\therefore \Delta V = \frac{dV}{dx} \times\Delta x ΔV=3x2Δx\Rightarrow \Delta V = 3x^{2}\,\Delta x ΔV=3x2×2x100\Rightarrow \Delta V = 3x^{2} \times \frac{2x}{100} ΔV=0.06x2\Rightarrow \Delta V = 0.06x^{2} Thus, the approximate change in volume is 0.06x3m30.06x^3\, m^3.