Solveeit Logo

Question

Question: Find the answer \[{\sec ^2}10 - {\cot ^2}80 + \dfrac{{\sin 15\cos 75 + \cos 15\sin 75}}{{\cos \the...

Find the answer
sec210cot280+sin15cos75+cos15sin75cosθsin(90θ)+sinθcos(90θ){\sec ^2}10 - {\cot ^2}80 + \dfrac{{\sin 15\cos 75 + \cos 15\sin 75}}{{\cos \theta \sin \left( {90 - \theta } \right) + \sin \theta \cos \left( {90 - \theta } \right)}}

Explanation

Solution

We will simplify the expression by using the formula for the sine of the sum of 2 angles. We will further simplify it using various properties of trigonometric functions. We will solve the expression after we obtain integral results and calculate the answer.

Formulas used:

  1. Sine of the sum of 2 angles (say AA and BB) is given by the sum of the product of Sine of AA and Cosine of BB and the product of Cosine of AA and Sine of BB:
    Sin(A+B)=SinACosB+SinBCosA\Rightarrow {\mathop{\rm Sin}\nolimits} \left( {A + B} \right) = {\mathop{\rm Sin}\nolimits} A{\mathop{\rm Cos}\nolimits} B + {\mathop{\rm Sin}\nolimits} B{\mathop{\rm Cos}\nolimits} A
  2. Secant of an angle is the reciprocal of Cosine of that angle:
    secx=1cosx\Rightarrow \sec x = \dfrac{1}{{\cos x}}
  3. Cotangent of an angle is the ratio of the cosine of that angle and the sine of that angle:
    cotx=cosxsinx\Rightarrow \cot x = \dfrac{{\cos x}}{{\sin x}}
  4. Sine of the difference of an angle (say xx) from 90 is the same as the cosine of that an angle:
    sin(90x)=cosx\Rightarrow \sin \left( {90 - x} \right) = \cos x
  5. Cosine of the difference of an angle (say xx) from 90 is the same as the sine of that an angle:
    cos(90x)=sinx\Rightarrow \cos \left( {90 - x} \right) = \sin x
  6. Sum of the square of the sine of an angle and the cosine of the same angle is 1:
    sin2x+cos2x=1 sin2x=1cos2x\begin{array}{l} \Rightarrow {\sin ^2}x + {\cos ^2}x = 1\\\ \Rightarrow {\rm{ }}{\sin ^2}x = 1 - {\cos ^2}x\end{array}

Complete step by step solution:
We will evaluate the right-most term first. We will substitute 15 for AA and 75 for BB in the formula for the Sine of the sum of 2 angles in the numerator:
sec210cot280+sin(15+75)cosθsin(90θ)+sinθcos(90θ)\Rightarrow {\sec ^2}10 - {\cot ^2}80 + \dfrac{{\sin \left( {15 + 75} \right)}}{{\cos \theta \sin \left( {90 - \theta } \right) + \sin \theta \cos \left( {90 - \theta } \right)}}
We will substitute θ\theta for AAand (90θ)\left( {90 - \theta } \right) for BB in the formula for the Sine of the sum of 2 angles in the denominator:
sec210cot280+sin(15+75)sin(θ+90θ) sec210cot280+sin90sin90 sec210cot280+1\begin{array}{l} \Rightarrow {\sec ^2}10 - {\cot ^2}80 + \dfrac{{\sin \left( {15 + 75} \right)}}{{\sin \left( {\theta + 90 - \theta } \right)}}\\\ \Rightarrow {\sec ^2}10 - {\cot ^2}80 + \dfrac{{\sin 90}}{{\sin 90}}\\\ \Rightarrow {\sec ^2}10 - {\cot ^2}80 + 1\end{array}
We will substitute 10 for xx in the formula for the secant of an angle:
1cos210cot280+1\Rightarrow \dfrac{1}{{{{\cos }^2}10}} - {\cot ^2}80 + 1
We will substitute 80 for xx in the formula for the cotangent of an angle:
1cos210cos280sin280+1 1cos2(9080)cos280sin2(9010)+1\begin{array}{l} \Rightarrow \dfrac{1}{{{{\cos }^2}10}} - \dfrac{{{{\cos }^2}80}}{{{{\sin }^2}80}} + 1\\\ \Rightarrow \dfrac{1}{{{{\cos }^2}\left( {90 - 80} \right)}} - \dfrac{{{{\cos }^2}80}}{{{{\sin }^2}\left( {90 - 10} \right)}} + 1\end{array}
We will substitute 10 for xx in the formula for the Sine of difference of an angle from 90:
1cos2(9080)cos280sin280+1 1cos2(9080)cos280cos210+1\begin{array}{l} \Rightarrow \dfrac{1}{{{{\cos }^2}\left( {90 - 80} \right)}} - \dfrac{{{{\cos }^2}80}}{{{{\sin }^2}80}} + 1\\\ \Rightarrow \dfrac{1}{{{{\cos }^2}\left( {90 - 80} \right)}} - \dfrac{{{{\cos }^2}80}}{{{{\cos }^2}10}} + 1\end{array}
We will substitute 80 for xx in the formula for the sum of square of the sine and the cosine of an angle:
sin280cos2(9080)+1\Rightarrow \dfrac{{{{\sin }^2}80}}{{{{\cos }^2}\left( {90 - 80} \right)}} + 1
We will substitute 80 for xx in the formula for the Cosine of the difference of an angle from 90:
sin280sin280+1 1+1 2\begin{array}{l} \Rightarrow \dfrac{{{{\sin }^2}80}}{{{{\sin }^2}80}} + 1\\\ \Rightarrow 1 + 1\\\ \Rightarrow 2\end{array}

\therefore The answer is 2.

Note:
We must know that the trigonometric functions are defined as ratios of different sides of a right-angled triangle. Sine is the ratio of the perpendicular and hypotenuse, cosine is the ratio of the base and hypotenuse, tangent is the ratio of perpendicular and base and so on.