Solveeit Logo

Question

Mathematics Question on Three Dimensional Geometry

Find the angles between the following pairs of lines:
(i) r=2i^5j^+k^+λ(3i^2j^+6k^)\overrightarrow r= 2\hat i-5\hat j+\hat k+ \lambda (3\hat i-2\hat j+6\hat k)and

r=7i^6k^+μ(i^+2j^+2k^)\overrightarrow r=7\hat i-6\hat k+\mu(\hat i+2\hat j+2\hat k)

(ii) r=3i^+j^2k^+λ(i^j^2k^)\overrightarrow r=3\hat i+\hat j-2\hat k+\lambda(\hat i-\hat j-2\hat k) and

r=2i^j^56k^+μ(3i^5j^4k^)\overrightarrow r = 2\hat i-\hat j-56\hat k+\mu(3\hat i-5\hat j-4\hat k)

Answer

(i) Let Q be the angle between the given lines.

The angle between the given pairs of lines is given by cosQ=b.bbb.\begin{vmatrix}\frac{\overrightarrow b. \overrightarrow b}{\| \overrightarrow b \mid \mid \overrightarrow b. \|} \end{vmatrix}

The given lines are parallel to the vectors, b1=3i^+2j^+6k^andb2=i^+2j^+2k^\overrightarrow b_1=3\hat i+2\hat j+6\hat k\, and \overrightarrow b_2=\hat i+2\hat j+2\hat k, respectively,

∴|b1\overrightarrow b_1|=32+22+62\sqrt {3^2+2^2+6^2} =7

|b2\overrightarrow b_2|=(1)2+(2)2+(2)2=3\sqrt{(1)^2+(2)^2+(2)^2}=3

b1.b2\overrightarrow b_1.\overrightarrow b_2

=(3i^+2j^+6k^)(i^+2j^+2k^)(3\hat i+2\hat j+6\hat k\,)(\hat i+2\hat j+2\hat k)

=31+22+62
=3+4+12
=19
\Rightarrow cos Q=1973\frac{19}{73}
\Rightarrow Q= \cos^{-1}$$\bigg(\frac{19}{21}\bigg)


(ii) The given lines are parallel to the vectors b1=i^j^2k^\overrightarrow b_1=\hat i-\hat j-2\hat k and b2=3i^5j^4k^\overrightarrow b_2=3\hat i-5\hat j-4\hat k , respectively,

b1=(1)2+(1)2+(2)2=6\mid \overrightarrow b_1\mid= \sqrt {(1)^2+(-1)^2+(-2)^2}=\sqrt 6

b1=(3)2+(5)2+(4)2=50=52\mid\overrightarrow b_1 \mid= \sqrt {(3)^2+(-5)^2+(-4)^2}=\sqrt {50}=5\sqrt 2

b1.b2\overrightarrow b_1.\overrightarrow b_2

=(i^j^2k^)(\hat i-\hat j-2\hat k ).(3i^5j^4k^)(3\hat i-5\hat j-4\hat k )

=1.3-1(-5)-2(-4)

=3+5+8

=16
cos Q=b.bbb.\begin{vmatrix}\frac{\overrightarrow b. \overrightarrow b}{\| \overrightarrow b \mid \mid \overrightarrow b. \|} \end{vmatrix}

cos Q=1616.52\frac{16}{\sqrt16.5\sqrt2}

cos Q=162.3.52\frac{16}{\sqrt 2.\sqrt3.5\sqrt2}

cos Q=16103\frac{16}{10\sqrt3}

cos Q=853\frac{8}{5\sqrt3}

Q=cos-1853\frac{8}{5\sqrt3}