Question
Mathematics Question on Three Dimensional Geometry
Find the angles between the following pairs of lines:
(i) r=2i^−5j^+k^+λ(3i^−2j^+6k^)and
r=7i^−6k^+μ(i^+2j^+2k^)
(ii) r=3i^+j^−2k^+λ(i^−j^−2k^) and
r=2i^−j^−56k^+μ(3i^−5j^−4k^)
(i) Let Q be the angle between the given lines.
The angle between the given pairs of lines is given by cosQ=∥b∣∣b.∥b.b
The given lines are parallel to the vectors, b1=3i^+2j^+6k^andb2=i^+2j^+2k^, respectively,
∴|b1|=32+22+62 =7
|b2|=(1)2+(2)2+(2)2=3
b1.b2
=(3i^+2j^+6k^)(i^+2j^+2k^)
=31+22+62
=3+4+12
=19
⇒ cos Q=7319
⇒ Q= \cos^{-1}$$\bigg(\frac{19}{21}\bigg)
(ii) The given lines are parallel to the vectors b1=i^−j^−2k^ and b2=3i^−5j^−4k^, respectively,
∴∣b1∣=(1)2+(−1)2+(−2)2=6
∣b1∣=(3)2+(−5)2+(−4)2=50=52
b1.b2
=(i^−j^−2k^).(3i^−5j^−4k^)
=1.3-1(-5)-2(-4)
=3+5+8
=16
cos Q=∥b∣∣b.∥b.b
cos Q=16.5216
cos Q=2.3.5216
cos Q=10316
cos Q=538
Q=cos-1538