Solveeit Logo

Question

Question: Find the angle of incidence for which angle of deviation from a liquid drop is minimum in a primary ...

Find the angle of incidence for which angle of deviation from a liquid drop is minimum in a primary rainbow

A

300

B

400

C

500

D

600

Answer

600

Explanation

Solution

sin i = µ sin r … (1)

differentiating eq. (1) cos i di = µ cos r dr

or drdi\frac { \mathrm { dr } } { \mathrm { di } } = cosiμcosr\frac { \cos i } { \mu \cos r } = 12\frac { 1 } { 2 }

or 2 cos i = µ cos r

or 4 cos2 i = µ2 cos2 r = µ2 (1 – sin2 r)

or 4 cos2 i = µ2 (1sin2iμ2)\left( 1 - \frac { \sin ^ { 2 } \mathrm { i } } { \mu ^ { 2 } } \right) = µ2 – (1 – cos2 i)

or 3 cos2 i = µ2 – 1

or cos i = μ213\sqrt { \frac { \mu ^ { 2 } - 1 } { 3 } } =727\sqrt { \frac { 7 } { 27 } }

or cos i =.26\sqrt { .26 }= .5

or i = 600.