Solveeit Logo

Question

Question: Find the angle between vector \[\hat{i}+\hat{j}\] and vector \[\hat{i}-\hat{j}\] ....

Find the angle between vector i^+j^\hat{i}+\hat{j} and vector i^j^\hat{i}-\hat{j} .

Explanation

Solution

Now we know that the dot product of two vectors a=(a1i^+a2j^+a3k^)\vec{a}=\left( {{a}_{1}}\hat{i}+{{a}_{2}}\hat{j}+{{a}_{3}}\hat{k} \right) and b=(b1i^+b2j^+b3k^)\vec{b}=\left( {{b}_{1}}\hat{i}+{{b}_{2}}\hat{j}+{{b}_{3}}\hat{k} \right) is given by a.b=(a1b1+a2b2+a3b3)\vec{a}.\vec{b}=\left( {{a}_{1}}{{b}_{1}}+{{a}_{2}}{{b}_{2}}+{{a}_{3}}{{b}_{3}} \right) . Also we know that a.b=abcosθ\vec{a}.\vec{b}=|\vec{a}||\vec{b}|\cos \theta where θ\theta is the angle between two vectors a\vec{a} and b\vec{b} and a=a12+a22+a32|\vec{a}|=\sqrt{{{a}_{1}}^{2}+{{a}_{2}}^{2}+{{a}_{3}}^{2}} for any vector a=(a1i^+a2j^+a3k^)\vec{a}=\left( {{a}_{1}}\hat{i}+{{a}_{2}}\hat{j}+{{a}_{3}}\hat{k} \right) . Hence with equation (1) and equation (2) we can find the value of θ\theta .

Complete step-by-step answer:
Now the given vectors are i^+j^\hat{i}+\hat{j} and vectors i^j^\hat{i}-\hat{j} .
Now let a=i^+j^\vec{a}=\hat{i}+\hat{j}
We know that for any vector a=(a1i^+a2j^+a3k^)\vec{a}=\left( {{a}_{1}}\hat{i}+{{a}_{2}}\hat{j}+{{a}_{3}}\hat{k} \right) modulus of vector a\vec{a} is a=a12+a22+a32|\vec{a}|=\sqrt{{{a}_{1}}^{2}+{{a}_{2}}^{2}+{{a}_{3}}^{2}}
Hence using this we get
a=12+12=2.........................(1)|\vec{a}|=\sqrt{{{1}^{2}}+{{1}^{2}}}=\sqrt{2}.........................(1)
Now consider i^j^\hat{i}-\hat{j}
Let b=i^j^\vec{b}=\hat{i}-\hat{j}
Now again we know for any vector a=(a1i^+a2j^+a3k^)\vec{a}=\left( {{a}_{1}}\hat{i}+{{a}_{2}}\hat{j}+{{a}_{3}}\hat{k} \right) modulus of vector a\vec{a} is a=a12+a22+a32|\vec{a}|=\sqrt{{{a}_{1}}^{2}+{{a}_{2}}^{2}+{{a}_{3}}^{2}}
Hence we get
b=12+(1)2=2....................(2)|\vec{b}|=\sqrt{{{1}^{2}}+{{\left( -1 \right)}^{2}}}=\sqrt{2}....................(2)
Now we know that the dot product of two vectors a=(a1i^+a2j^+a3k^)\vec{a}=\left( {{a}_{1}}\hat{i}+{{a}_{2}}\hat{j}+{{a}_{3}}\hat{k} \right) and b=(b1i^+b2j^+b3k^)\vec{b}=\left( {{b}_{1}}\hat{i}+{{b}_{2}}\hat{j}+{{b}_{3}}\hat{k} \right) is given by a.b=(a1b1+a2b2+a3b3)\vec{a}.\vec{b}=\left( {{a}_{1}}{{b}_{1}}+{{a}_{2}}{{b}_{2}}+{{a}_{3}}{{b}_{3}} \right) .
Hence the dot product of a=i^+j^\vec{a}=\hat{i}+\hat{j} and b=i^j^\vec{b}=\hat{i}-\hat{j} is given by
a.b=1(1)+1(1)=0\vec{a}.\vec{b}=1(1)+1(-1)=0
Now for dot product we also have that a.b=abcosθ\vec{a}.\vec{b}=|\vec{a}||\vec{b}|\cos \theta where θ\theta is the angle between two vectors a\vec{a} and b\vec{b} .
Hence for we get of a=i^+j^\vec{a}=\hat{i}+\hat{j} and b=i^j^\vec{b}=\hat{i}-\hat{j}
0=abcosθ0=|\vec{a}||\vec{b}|\cos \theta where θ\theta is the angle between two vectors a\vec{a} and b\vec{b} .
Now from equation (1) and equation (2) we substitute the value of a|\vec{a}| and b|\vec{b}| hence we get.
0=22cosθ0=\sqrt{2}\sqrt{2}\cos \theta where θ\theta is the angle between two vectors a\vec{a} and b\vec{b} .
Hence we get
0=2cosθ0=2\cos \theta
Dividing the equation by 2 we get.
cosθ=0\cos \theta =0
We know that if cosθ=0\cos \theta =0 then the value of θ\theta is π2\dfrac{\pi }{2}
Hence we get the angle between vector i^+j^\hat{i}+\hat{j} and vector i^j^\hat{i}-\hat{j} is π2\dfrac{\pi }{2} .

Note: Note that we have if the vectors are perpendicular then their dot product is 0 and vice versa. Hence if we get a dot product as 0 we can directly say that the vectors are perpendicular.
Also we can find the angle between two vectors with the help of a×b=absinθ\vec{a}\times \vec{b}=|\vec{a}||\vec{b}|\sin \theta where θ\theta is angle between two vectors and for vectors a=(a1i^+a2j^+a3k^)\vec{a}=\left( {{a}_{1}}\hat{i}+{{a}_{2}}\hat{j}+{{a}_{3}}\hat{k} \right) and b=(b1i^+b2j^+b3k^)\vec{b}=\left( {{b}_{1}}\hat{i}+{{b}_{2}}\hat{j}+{{b}_{3}}\hat{k} \right) cross product is given by a×b=i^j^k^ a1a2a3 b1b2b3 \vec{a}\times \vec{b}=\left| \begin{matrix} {\hat{i}} & {\hat{j}} & {\hat{k}} \\\ {{a}_{1}} & {{a}_{2}} & {{a}_{3}} \\\ {{b}_{1}} & {{b}_{2}} & {{b}_{3}} \\\ \end{matrix} \right|