Solveeit Logo

Question

Question: Find the angle between two vectors \(\overrightarrow a \) and \(\overrightarrow b \) with magnitudes...

Find the angle between two vectors a\overrightarrow a and b\overrightarrow b with magnitudes 3\sqrt 3 and 2 respectively having ab=6\overrightarrow a \cdot \overrightarrow b = \sqrt 6 .

Explanation

Solution

Hint: We need to have a basic idea on the vector concept to solve this problem. The angle between two vectors can be found using the dot product of those vectors.

Complete step-by-step answer:

It is given that a=3,b=2\left| {\overrightarrow a } \right| = \sqrt 3 ,\left| {\overrightarrow b } \right| = 2 and ab=6\overrightarrow a \cdot \overrightarrow b = \sqrt 6
Now, we know that ab=abcosθ\overrightarrow a \cdot \overrightarrow b = \left| {\overrightarrow a } \right|\left| {\overrightarrow b } \right|\cos \theta
6=3×2×cosθ\therefore \sqrt 6 = \sqrt 3 \times 2 \times \cos \theta
cosθ=63×2\Rightarrow \cos \theta = \dfrac{{\sqrt 6 }}{{\sqrt 3 \times 2}}
cosθ=12\Rightarrow \cos \theta = \dfrac{1}{{\sqrt 2 }}
θ=π4\Rightarrow \theta = \dfrac{\pi }{4}
Hence, the angle between the given vectors a\overrightarrow a and b\overrightarrow b =π4\dfrac{\pi }{4}.

Note: The angle between two vectors a\overrightarrow a and b\overrightarrow b is defined by cosθ=abab,\cos \theta = \dfrac{{\overrightarrow a \cdot \overrightarrow b }}{{\left| {\overrightarrow a } \right|\left| {\overrightarrow b } \right|}}, θ\theta is the angle between vectors, a,b\left| {\overrightarrow a } \right|,\left| {\overrightarrow b } \right| are the magnitudes of the vectors a\overrightarrow a and b\overrightarrow b .