Solveeit Logo

Question

Question: Find the angle between two vectors \(a\,\,and\,\,b\,\,if|a + b| = a - b|\)....

Find the angle between two vectors aandbifa+b=aba\,\,and\,\,b\,\,if|a + b| = a - b|.

Explanation

Solution

A vector is an object that has both a magnitude and a direction and we use the below formula to find the angle between the vectors.
a+b=a2+b22a.bcosθ|a + b| = \sqrt {{a^2} + {b^2} - 2a.b\cos \theta } and ab+a2+b22a.bcosθ|a - b| + \sqrt {{a^2} + {b^2} - 2a.b\cos \theta }

Complete step by step solution:
Let the angle between two vectors AAand BBbeθ\theta .
So, a+b=ab|a + b| = |a - b|
Now, by using the formula
a+b=(a)2+(b)2+2(a)(b)cosθ|a + b| = \sqrt {{{(a)}^2} + {{(b)}^2} + 2(a)(b)\cos \theta }
ab=a2+b22(a)(b)cosθ|a - b| = \sqrt {|a{|^2} + |b{|^2} - 2(a)(b)\cos \theta }
Now, a+b=ab|a + b| = |a - b|
(a)2+(b)2+2a.bcosθ=(a)2+(b)22(a)(b)cosθ\sqrt {{{(a)}^2} + {{(b)}^2} + 2a.b\cos \theta } = \sqrt {{{(a)}^2} + {{(b)}^2} - 2(a)(b)\cos \theta }
Squaring both sides, we have
((a)2+(b)2+2ab.cosθ)2=((a)2+(b)2=2(a)(b)cosθ)2{\left( {\sqrt {{{(a)}^2} + {{(b)}^2} + 2ab.\cos \theta } } \right)^2} = {\left( {\sqrt {{{(a)}^2} + {{(b)}^2} = 2(a)(b)\cos \theta } } \right)^2}
(a)2+(b)2+2a.bcosθ=a2+b22a+bcosθ{(a)^2} + {(b)^2} + 2a.b\cos \theta = {a^2} + {b^2} - 2a + b\cos \theta
2abcosθ+2abcosθ=02ab\cos \theta + 2ab\cos \theta = 0
4a.bcosθ=04a.b\cos \theta = 0
cosθ=04ab\cos \theta = \dfrac{0 }{{4ab}}
cosθ=0\cos \theta = 0
As we know that the value cos90o=0\cos {90^o} = 0
So, cosθ=90o\cos \theta = {90^o}
θ=90o\theta = {90^o}

Note: Dot product or scalar product is an algebraic operation that takes two equal-length sequences of numbers, returns a single number.