Question
Mathematics Question on Vector Algebra
Find the angle between the vectors i^−2j^+3k^ and 3i^−2j^+k^.
Answer
The correct answer is: θ=cos−1(75)
The given vectors are a=i^−2j^+3k^ and b=3i^−2j^+k^
∣a∣=12+(−2)2+32=1+4+9=14
∣b∣=32+(−2)2+12=9+4+1=14
Now,a.b=(i^−2j^+3k^)(3i^−2j^+k^)
=1.3+(−2)(−2)+3.1
=3+4+3
=10
Also,we know that a.b=∣a∣∣b∣cosθ
∴10=1414cosθ
⇒cosθ=1410
⇒θ=cos−1(75)