Solveeit Logo

Question

Mathematics Question on Vector Algebra

Find the angle between the vectors i^2j^+3k^\hat{i}-2\hat{j}+3\hat{k} and 3i^2j^+k^3\hat{i}-2\hat{j}+\hat{k}.

Answer

The correct answer is: θ=cos1(57)θ=cos^{-1}(\frac{5}{7})
The given vectors are a=i^2j^+3k^\vec{a}=\hat{i}-2\hat{j}+3\hat{k} and b=3i^2j^+k^\vec{b}=3\hat{i}-2\hat{j}+\hat{k}
a=12+(2)2+32=1+4+9=14|\vec{a}|=\sqrt{1^2+(-2)^2+3^2}=\sqrt{1+4+9}=\sqrt{14}
b=32+(2)2+12=9+4+1=14|\vec{b}|=\sqrt{3^2+(-2)^2+1^2}=\sqrt{9+4+1}=\sqrt{14}
Now,a.b=(i^2j^+3k^)(3i^2j^+k^)\vec{a}.\vec{b}=(\hat{i}-2\hat{j}+3\hat{k})(3\hat{i}-2\hat{j}+\hat{k})
=1.3+(2)(2)+3.1=1.3+(-2)(-2)+3.1
=3+4+3=3+4+3
=10=10
Also,we know that a.b=abcosθ\vec{a}.\vec{b}=|\vec{a}||\vec{b}|cosθ
10=1414cosθ∴10=\sqrt{14}\sqrt{14}cosθ
cosθ=1014⇒cosθ=\frac{10}{14}
θ=cos1(57)⇒θ=cos^{-1}(\frac{5}{7})