Solveeit Logo

Question

Question: Find the angle between the planes whose vector equations are \(\vec r.\left( {2\hat i + 2\hat j - 3\...

Find the angle between the planes whose vector equations are r.(2i^+2j^3k^)=5\vec r.\left( {2\hat i + 2\hat j - 3\hat k} \right) = 5 and r.(i^2j^+3k^)=7\vec r.\left( {\hat i - 2\hat j + 3\hat k} \right) = 7

Explanation

Solution

For finding the angle between the planes we can find the angle between their normal vectors. Then we can find the cosine of the angle between the vectors by dividing the dot product of the vectors by the product of the modulus of the vectors. Then we can take the inverse of the cosine function to get the required angle.

Complete step by step solution:
We have the planes r.(2i^+2j^3k^)=5\vec r.\left( {2\hat i + 2\hat j - 3\hat k} \right) = 5 and r.(i^2j^+3k^)=7\vec r.\left( {\hat i - 2\hat j + 3\hat k} \right) = 7
We know that a general equation of a plane is given by r.n=d\vec r.\vec n = d where n\vec n is the normal vector or the vector perpendicular to the plane.
So, the normal vectors of the given planes are given by,
n1=2i^+2j^3k^{\vec n_1} = 2\hat i + 2\hat j - 3\hat k
n2=i^2j^+3k^{\vec n_2} = \hat i - 2\hat j + 3\hat k
Now we can find the dot product of the vectors. We know that the dot product of 2 vectors is given by multiplying their respective vector components and taking their sum.
n1.n2=(2i^+2j^3k^)(i^2j^+3k^)\Rightarrow {\vec n_1}.{\vec n_2} = \left( {2\hat i + 2\hat j - 3\hat k} \right)\left( {\hat i - 2\hat j + 3\hat k} \right)
On multiplying the respective vector components, we get,
n1.n2=(2×1)+(2×2)+(3×3)\Rightarrow {\vec n_1}.{\vec n_2} = \left( {2 \times 1} \right) + \left( { - 2 \times 2} \right) + \left( { - 3 \times 3} \right)
On simplification, we get,
n1.n2=249\Rightarrow {\vec n_1}.{\vec n_2} = 2 - 4 - 9
So, we have,
n1.n2=11\Rightarrow {\vec n_1}.{\vec n_2} = - 11
Now we can find the modulus of the normal vectors.
Modulus of vector ai^+bj^+ck^a\hat i + b\hat j + c\hat k is a2+b2+c2\sqrt {{a^2} + {b^2} + {c^2}}
So, modulus of n1=2i^+2j^3k^{\vec n_1} = 2\hat i + 2\hat j - 3\hat k is,
n1=22+22+(3)2\Rightarrow \left| {{{\vec n}_1}} \right| = \sqrt {{2^2} + {2^2} + {{\left( { - 3} \right)}^2}}
On simplifying the squares, we get,
\Rightarrow n1=4+4+9\left| {{{\vec n}_1}} \right| = \sqrt {4 + 4 + 9}
On adding we get,
\Rightarrow n1=17\left| {{{\vec n}_1}} \right| = \sqrt {17}
Now take the 2nd normal vector.
n2=i^2j^+3k^{\vec n_2} = \hat i - 2\hat j + 3\hat k
So, the modulus is
\Rightarrow n2=12+(2)2+32\left| {{{\vec n}_2}} \right| = \sqrt {{1^2} + {{\left( { - 2} \right)}^2} + {3^2}}
On simplifying the squares, we get,
\Rightarrow n2=1+4+9\left| {{{\vec n}_2}} \right| = \sqrt {1 + 4 + 9}
On adding we get,
\Rightarrow $\left| {{{\vec n}_2}} \right| = \sqrt {14} Weknowthat We know that\left| {\vec a.\vec b} \right| = \left| {\vec a} \right|\left| {\vec b} \right|\cos \theta So,wehave, So, we have,\left| {{{\vec n}_1}.{{\vec n}_2}} \right| = \left| {{{\vec n}_1}} \right|\left| {{{\vec n}_2}} \right|\cos \theta Onsubstitutingthevalues,weget, On substituting the values, we get, \Rightarrow \left| { - 11} \right| = \sqrt {17} \times \sqrt {14} \times \cos \theta Onrearranging,weget, On rearranging, we get, \Rightarrow \cos \theta = \dfrac{{\left| { - 11} \right|}}{{\sqrt {17} \times \sqrt {14} }}Wecantakethepositivevalueofthenumeratorandmultiplythedenominator.So,weget, We can take the positive value of the numerator and multiply the denominator. So, we get, \Rightarrow \cos \theta = \dfrac{{11}}{{\sqrt {238} }}Toobtaintherequiredangle,wecantaketheinverseofthecosfunction. To obtain the required angle, we can take the inverse of the cos function. \Rightarrow \theta = {\cos ^{ - 1}}\left( {\dfrac{{11}}{{\sqrt {238} }}} \right)Onsimplification,weget, On simplification, we get, \Rightarrow \theta = {\cos ^{ - 1}}\left( {0.71} \right)Hence,wehave, Hence, we have, \Rightarrow \theta = 44.76^\circ .Thus,theanglebetweenthenormalvectorsis. Thus, the angle between the normal vectors is 44.76^\circ .Therefore,theanglebetweentheplanesalsowillbeequalto. Therefore, the angle between the planes also will be equal to 44.76^\circ $.

So, the required solution is 44.76{44.76}^\circ .

Note:
The equation of the plane in its vector form is given by r.n=d\vec r.\vec n = d , where n\vec n is the normal vector. We used the equation to find the magnitude of the dot product. We know that dot products of 2 vectors give a scalar value. We must take only the modulus of the dot product to use in the equation. We must take only the positive value for finding the inverse of the trigonometric function. The exact value of the angle can be found out by using a calculator or table.