Solveeit Logo

Question

Mathematics Question on Three Dimensional Geometry

Find the angle between the planes whose vector equations are

r.(2i^+2j^3k^)=5\overrightarrow r.(2\hat i+2\hat j-3\hat k)=5 and r.(3i^3j^+5k^)=3\overrightarrow r.(3\hat i-3\hat j+5\hat k)=3

Answer

The equations of the given planes are r.(2i^+2j^3k^)=5\overrightarrow r.(2\hat i+2\hat j-3\hat k)=5 and r.(3i^3j^+5k^)=3\overrightarrow r.(3\hat i-3\hat j+5\hat k)=3

It is known that if n1\overrightarrow n_1 and n2\overrightarrow n_2 are normal to the planes, r.n1=d1\overrightarrow r.\overrightarrow n_1=\overrightarrow d_1 and r.n2=d2\overrightarrow r.\overrightarrow n_2=\overrightarrow d_2
then the angle between them, Q, is given by,

cos Q= n1.n2n1n2\begin{vmatrix}\frac{\overrightarrow n_1.\overrightarrow n_2}{\|\overrightarrow n_1\| \overrightarrow n_2 \|}\end{vmatrix}...(1)

Here, n1=2i^+2j^3k^\overrightarrow n_1=2\hat i+2\hat j-3\hat k and n2=3i^3j^+5k^\overrightarrow n_2=3\hat i-3\hat j+5\hat k

n1.n2\overrightarrow n_1.\overrightarrow n_2= (2\hat i+2\hat j-3\hat k)$$(3\hat i-3\hat j+5\hat k)

=2.3+2.(-3)+(-3).5 =-15

|n1\overrightarrow n_1|=(2)2+(2)2+(3)2=17\sqrt{(2)^2+(2)^2+(-3)^2}=\sqrt{17}

|n2\overrightarrow n_2|=(3)2+(3)2+(5)2=43\sqrt{(3)^2+(-3)^2+(5)^2}=\sqrt{43}
Substituting the value of n1.n2\overrightarrow n_1.\overrightarrow n_2,|n1\overrightarrow n_1|and|n2\overrightarrow n_2| in equation(1), we obtain

cos Q=|1517.43\frac{-15}{\sqrt{17}.\sqrt{43}}|

\Rightarrow cos Q=15731\frac{15}{\sqrt{731}}

\Rightarrow cos Q-1 =(15731)\bigg(\frac{15}{\sqrt{731}}\bigg)