Solveeit Logo

Question

Question: Find the angle between the lines whose direction ratios are proportional to 4, -3, 5 and 3, 4, 5....

Find the angle between the lines whose direction ratios are proportional to 4, -3, 5 and 3, 4, 5.

Explanation

Solution

Determine the line vectors using the direction ratios, we know for the vector r=ai ^+bj+ck\overrightarrow{r}=a\overset{\hat{\ }}{\mathop{i}}\,+b\overset{\wedge }{\mathop{j}}\,+c\overset{\wedge }{\mathop{k}}\,, the direction ratios are (a, b, c) and the proportionality given in the question, then find their scalar product.

Complete step-by-step answer :
Let us assume the line vector with direction ratios 4, -3, 5 to be a\overrightarrow{a}.
Then, a=4i ^3j+5k\overrightarrow{a}=4\overset{\hat{\ }}{\mathop{i}}\,-3\overset{\wedge }{\mathop{j}}\,+5\overset{\wedge }{\mathop{k}}\,.
Let us assume the line vector with direction ratios 3, 4, 5 to be b\overrightarrow{b}.
Therefore, the x component is 3.
Therefore, the y component is 4.
Therefore, the z component is 5.
Then, b=3i ^+4j+5k\overrightarrow{b}=3\overset{\hat{\ }}{\mathop{i}}\,+4\overset{\wedge }{\mathop{j}}\,+5\overset{\wedge }{\mathop{k}}\,.
We know that the scalar product of x and y\overrightarrow{x}\ and\ \overrightarrow{y}is
x.y=xycosθ\overrightarrow{x}.\overrightarrow{y}=\left| \overrightarrow{x} \right|\left| \overrightarrow{y} \right|\cos \theta ,
Where x and y\overrightarrow{x}\ and\ \overrightarrow{y} are the magnitudes of x and y\overrightarrow{x}\ and\ \overrightarrow{y} respectively and θ\theta is the angle between x and y\overrightarrow{x}\ and\ \overrightarrow{y}.
Let us assume the angle between a\overrightarrow{a} and b\overrightarrow{b} i.e. the two given line to be ϕ\phi , then
(a.b)=abcosϕ\left( \overrightarrow{a}.\overrightarrow{b} \right)=\left| \overrightarrow{a} \right|\left| \overrightarrow{b} \right|\cos \phi
This can also be written as,
cosϕ=a.bab..........(i)\cos \phi =\dfrac{\overrightarrow{a}.\overrightarrow{b}}{\left| \overrightarrow{a} \right|\left| \overrightarrow{b} \right|}..........(i)
Now we will find the values separately,
a=42+(3)2+52=50=52 b=32+42+52=50=52 \begin{aligned} & \left| \overrightarrow{a} \right|=\sqrt{{{4}^{2}}+{{\left( -3 \right)}^{2}}+{{5}^{2}}}=\sqrt{50}=5\sqrt{2} \\\ & \left| \overrightarrow{b} \right|=\sqrt{{{3}^{2}}+{{4}^{2}}+{{5}^{2}}}=\sqrt{50}=5\sqrt{2} \\\ \end{aligned}
Substituting these values in equation (i), we get
cosϕ=a.bab cosϕ=(4i ^3j+5k)(3i ^+4j+5k)52×52 cosϕ=4×33×4+5×550 cosϕ=2550 cosϕ=12 \begin{aligned} & \cos \phi =\dfrac{\overrightarrow{a}.\overrightarrow{b}}{\left| \overrightarrow{a} \right|\left| \overrightarrow{b} \right|} \\\ & \Rightarrow \cos \phi =\dfrac{\left( 4\overset{\hat{\ }}{\mathop{i}}\,-3\overset{\wedge }{\mathop{j}}\,+5\overset{\wedge }{\mathop{k}}\, \right)\left( 3\overset{\hat{\ }}{\mathop{i}}\,+4\overset{\wedge }{\mathop{j}}\,+5\overset{\wedge }{\mathop{k}}\, \right)}{5\sqrt{2}\times 5\sqrt{2}} \\\ & \Rightarrow \cos \phi =\dfrac{4\times 3-3\times 4+5\times 5}{50} \\\ & \Rightarrow \cos \phi =\dfrac{25}{50} \\\ & \Rightarrow \cos \phi =\dfrac{1}{2} \\\ \end{aligned}
Therefore,
ϕ=cos112\phi ={{\cos }^{-1}}\dfrac{1}{2}
ϕ=π3\phi =\dfrac{\pi }{3}
Therefore, the angle between the two lines is π3\dfrac{\pi }{3}.

Note :Another approach to find the angle between two lines is by first finding the unit vectors of the given lines by using the formula a=aa\overset{\wedge }{\mathop{a}}\,=\dfrac{\overrightarrow{a}}{\left| \overrightarrow{a} \right|}. And the angle between two unit vector is given by cosϕ=a.b\cos \phi =\overset{\wedge }{\mathop{a}}\,.\overset{\wedge }{\mathop{b}}\,