Question
Question: Find the angle between the following pairs of lines: (i) \[\dfrac{{x + 4}}{3} = \dfrac{{y - 1}}{5}...
Find the angle between the following pairs of lines:
(i) 3x+4=5y−1=4z+3 and 1x+1=1y−4=2z−5.
Solution
In our question the equation of line is given in Cartesian form. Let L1 and L2 be any two straight lines in three dimensional space, in which the lines passing through the origin and with direction ratios: a1,b1,c1 and a2,b2,c2 to the lines L1 and L2 respectively. In Cartesian form, if θ is the angle between the lines,
L1:a1x−x1=b1y−y1=c1z−z1
L2:a2x−x2=b2y−y2=c2z−z2
Then angle between the lines is: cosθ=a12+b12+c12a22+b22+c22a1a2+b1b2+c1c2, let us find the angle by using this formula.
Complete answer:
We are given the problem,
(i) 3x+4=5y−1=4z+3 and 1x+1=1y−4=2z−5.
The direction ratios of the first line are 3,5,4 and the direction ratios of the second line are 1,1,2, that is a1=3,b1=5,c1=−3 and a2=1,b2=1,c2=2
If θ is the angle between them, then substitute the values in the formula:cosθ=a12+b12+c12a22+b22+c22a1a2+b1b2+c1c2
cosθ=32+52+4212.12.223.1+5.1+4.2
The dot operator represents the multiplication, so by performing multiplication in numerator and by squaring in the denominator,
=9+25+161+1+43+5+8
The values inside the modulus (||) is +ve, so removing the modulus.
=50616
The 50 can be also written as 25×2 because 25×2=50, similarly 6 is written as 2×3,
=25×22×316
The square root of 25 is 5$$$$\left( {\sqrt {25} = 5} \right), therefore by taking square root of 25,
=522316
Now multiply 2×2 we will get 2i.e., 2×2=2
=5×2×316
Cancelling the numerator 16 by the denominator 2, we will get,
=538
cosθ=538
Bringing the cos into the R.H.S. it will become inverse, that is, cos−1
θ=cos−1538.
Therefore the angle between 3x+4=5y−1=4z+3 and 1x+1=1y−4=2z−5 is θ=cos−1538.
Note:
The angle between the pairs of lines can also be found by using the vector method. In vector method let b→ the vectors parallel to the given line. If b→=ai^+bj^+ck^, then a,b,c are direction ratios of the line with i^,j^,k^ are the unit vectors in the direction of x-axis, y-axis and z-axis respectively.
Then the angle θ between the lines is given by: cosθ=b1→b2→b1→.b2→.
In our question the lines are given in Cartesian form, let convert it into vector form to apply this formula.
Equation of the first line is 3x+4=5y−1=4z+3⇒b1→=3i^+5j^+4k^ and equation of the second line is 1x+1=1y−4=2z−5⇒b2→=1i^+1j^+2k^.
Substituting the values in the formula, cosθ=b1→b2→b1→.b2→
The magnitude of a vector b→=ai^+bj^+ck^ is b→=a2+b2+c2, by applying this, b1→=32+52+42 and b2→=12+12+22.
cosθ=32+52+4212+12+22(3i^+5j^+4k^)(1i^+1j^+2k^)
Now in numerator multiply the coefficients of i^, j^ and k^ respectively and in denominator calculate the values of square,
=9+25+161+1+43+5+8
By doing addition,
=50+616
By simplifying as we do as in the earlier method we will get,
cosθ=538
θ=cos−1538.
Here we use two different methods to find the angle between the pairs of lines, one is the Cartesian method and the other is the vector method. In both methods we only use the values in the denominator from a line equation to find the angle and not the numerator values so don’t get confused with this.