Solveeit Logo

Question

Mathematics Question on Three Dimensional Geometry

Find the angle between the following pairs of lines:

(i)x22=y15=z+33\frac{x-2}{2}=\frac{y-1}{5}=\frac{z+3}{-3} and x+21=y48=z54\frac{x+2}{-1}=\frac{y-4}{8}=\frac{z-5}{4}

(ii x2=y2=z1\frac{x}{2}=\frac{y}{2}=\frac{z}{1} and x54=y21=z38\frac{x-5}{4}=\frac{y-2}{1}=\frac{z-3}{8}

Answer

(i) Let b1\overrightarrow b_1 and b2\overrightarrow b_2 be the vectors parallel to the pair of lines, x22=y15=z+33\frac{x-2}{2}=\frac{y-1}{5}=\frac{z+3}{-3} and x+21=y48=z54\frac{x+2}{-1}=\frac{y-4}{8}=\frac{z-5}{4}, respectively.

b1=2i^+5j^3k^\overrightarrow b_1=2\hat i+5\hat j-3\hat k and b2=i^+8j^+4k^\overrightarrow b_2=-\hat i+8\hat j+4\hat k

b1=(2)2+(5)2+(3)2=38\mid \overrightarrow b_1\mid =\sqrt{(2)^2+(5)^2+(-3)^2}=\sqrt {38}

b2=(1)2+(8)2+(4)2=81=9\mid \overrightarrow b_2\mid =\sqrt{(-1)^2+(8)^2+(4)^2}=\sqrt {81}=9

b1.b2\mid \overrightarrow b_1.\mid \overrightarrow b_2 = (2i^+5j^3k^)(2\hat i+5\hat j-3\hat k).(i^+8j^+4k^)(-\hat i+8\hat j+4\hat k)

= 2(-1)+5×8+(-3).4
=-2+40-12
=26

The angle, Q, between the given pair of lines is given by the relation,

cos Q=b1.b2b1b2\begin{vmatrix}\frac{\overrightarrow b_1.\overrightarrow b_2}{\|\overrightarrow b_1 \| \overrightarrow b_2 \|} \end{vmatrix}

\Rightarrow cos Q=26938\frac{26}{9\sqrt{38}}

\Rightarrow Q=cos1(26938)\cos^{-1} \bigg(\frac{26}{9\sqrt{38}}\bigg)


(ii) Let b1,b2\overrightarrow b_1,\overrightarrow b_2 be the vectors parallel to the given pair of lines, x2=y2=z1\frac{x}{2}=\frac{y}{2}=\frac{z}{1} and x54=y21=z38\frac{x-5}{4}=\frac{y-2}{1}=\frac{z-3}{8}, respectively.

b1=2i^+2j^+k^\overrightarrow b_1=2\hat i+2\hat j+\hat k and b2=4i^+j^+8k^\overrightarrow b_2=4\hat i+\hat j+8\hat k

∴|b1\overrightarrow b_1|=(2)2+(2)2+(1)2=9=3\sqrt{(2)^2+(2)^2+(1)^2}=\sqrt9=3

|b2\overrightarrow b_2|=42+12+82=81=9\sqrt{4^2+1^2+8^2}=\sqrt{81}=9

b1.b2\overrightarrow b_1.\overrightarrow b_2=(2\hat i+2\hat j+\hat k).$$(4\hat i+\hat j+8\hat k)

=2×4+2×1+1×8
=8+2+8
=18

If Q is the angle between the given pair of lines,

then cos Q=b1.b2b1b2\begin{vmatrix}\frac{\overrightarrow b_1.\overrightarrow b_2}{\|\overrightarrow b_1 \| \overrightarrow b_2 \|} \end{vmatrix}

\Rightarrow cos Q=1839=23\frac{18}{3*9}=\frac{2}{3}

\Rightarrow Q= cos1(23)\cos^{-1}\bigg(\frac{2}{3}\bigg)