Question
Mathematics Question on Three Dimensional Geometry
Find the angle between the following pairs of lines:
(i)2x−2=5y−1=−3z+3 and −1x+2=8y−4=4z−5
(ii 2x=2y=1z and 4x−5=1y−2=8z−3
(i) Let b1 and b2 be the vectors parallel to the pair of lines, 2x−2=5y−1=−3z+3 and −1x+2=8y−4=4z−5, respectively.
∴ b1=2i^+5j^−3k^ and b2=−i^+8j^+4k^
∣b1∣=(2)2+(5)2+(−3)2=38
∣b2∣=(−1)2+(8)2+(4)2=81=9
∣b1.∣b2 = (2i^+5j^−3k^).(−i^+8j^+4k^)
= 2(-1)+5×8+(-3).4
=-2+40-12
=26
The angle, Q, between the given pair of lines is given by the relation,
cos Q=∥b1∥b2∥b1.b2
⇒ cos Q=93826
⇒ Q=cos−1(93826)
(ii) Let b1,b2 be the vectors parallel to the given pair of lines, 2x=2y=1z and 4x−5=1y−2=8z−3, respectively.
b1=2i^+2j^+k^ and b2=4i^+j^+8k^
∴|b1|=(2)2+(2)2+(1)2=9=3
|b2|=42+12+82=81=9
b1.b2=(2\hat i+2\hat j+\hat k).$$(4\hat i+\hat j+8\hat k)
=2×4+2×1+1×8
=8+2+8
=18
If Q is the angle between the given pair of lines,
then cos Q=∥b1∥b2∥b1.b2
⇒ cos Q=3∗918=32
⇒ Q= cos−1(32)