Solveeit Logo

Question

Question: Find the angle between any diagonals of a cube....

Find the angle between any diagonals of a cube.

Explanation

Solution

Hint : The formula to be used for the for calculating the angle between the two vectors is
cosθ=a.bab\cos \theta = \dfrac{{\vec a.\vec b}}{{\left| {\vec a} \right|\left| {\vec b} \right|}}, where a\vec a and b\vec b are two vectors.

Complete step-by-step answer :
The figure below shows a cube of side length 1, in which OQ and OP are its diagonals. O is the origin of the cube.

From the above figure,
The coordinates of point P(1,1,1)P(1,1,1)
The coordinates of point Q(1,1,0)Q(1,1,0)
Vector OP is given by,
OP=i^+j^+k^\mathop {OP}\limits^ \to = \hat i + \hat j + \hat k
The modulus of the vector r is given by,
r=ai^+bj^+ck^\Rightarrow \vec r = a\hat i + b\hat j + c\hat k is r=a2+b2+c2\left| {\vec r} \right| = \sqrt {{a^2} + {b^2} + {c^2}}
The modulus of OP\left| {\mathop {OP}\limits^ \to } \right| is given by,

OP=12+12+12 OP=3  \Rightarrow \left| {\mathop {OP}\limits^ \to } \right| = \sqrt {{1^2} + {1^2} + {1^2}} \\\ \Rightarrow \left| {\mathop {OP}\limits^ \to } \right| = \sqrt 3 \\\
Vector OQ is given by,
OQ=i^+j^\mathop {OQ}\limits^ \to = \hat i + \hat j
The modulus of vector OQ is given by,
OQ=12+12 OQ=2  \Rightarrow \left| {\mathop {OQ}\limits^ \to } \right| = \sqrt {{1^2} + {1^2}} \\\ \Rightarrow \left| {\mathop {OQ}\limits^ \to } \right| = \sqrt 2 \\\
The angle between OP\mathop {OP}\limits^ \to and OQ\mathop {OQ}\limits^ \to is given by,
cosθ=OP.OQOPOQ(1)\Rightarrow \cos \theta = \dfrac{{\mathop {OP}\limits^ \to .\mathop {OQ}\limits^ \to }}{{\left| {\mathop {OP}\limits^ \to } \right|\left| {\mathop {OQ}\limits^ \to } \right|}} \cdots \left( 1 \right)
Substitute the value of OP\mathop {OP}\limits^ \to and OQ\mathop {OQ}\limits^ \to in equation (1)
The dot product of same unit vector is i^.i^=1\hat i.\hat i = 1 and that of different unit vector is i^.j^=0\hat i.\hat j = 0
cosθ=1+1+0(3)(2) cosθ=2(3)(2) cosθ=23 θ=cos1(0.8165) θ=35.26o  \Rightarrow \cos \theta = \dfrac{{1 + 1 + 0}}{{\left( {\sqrt 3 } \right)\left( {\sqrt 2 } \right)}} \\\ \Rightarrow \cos \theta = \dfrac{2}{{\left( {\sqrt 3 } \right)\left( {\sqrt 2 } \right)}} \\\ \Rightarrow \cos \theta = \dfrac{{\sqrt 2 }}{{\sqrt 3 }} \\\ \theta = {\cos ^{ - 1}}\left( {0.8165} \right) \\\ \Rightarrow \theta = {35.26^o} \\\
Hence, the angle between any two diagonals of a cube is 35.26o{35.26^o}

Note : The important point that is to be noted are,
The value of vector AB if vector A and vector B are given, is calculated as
AB=BA\left| {\mathop {AB}\limits^ \to } \right| = \mathop B\limits^ \to - \mathop A\limits^ \to
The modulus of the vector r=ai^+bj^+ck^\vec r = a\hat i + b\hat j + c\hat k is calculated by taking the square root of the sum of the square of the coefficients and is given by the formula
r=a2+b2+c2\left| {\vec r} \right| = \sqrt {{a^2} + {b^2} + {c^2}}
The modulus of the vectors tells about the magnitude of the vector.
The angle between the two vectors m\vec m and n\vec n is given by the formula
cosθ=m.nmn\cos \theta = \dfrac{{\vec m.\vec n}}{{\left| {\vec m} \right|\left| {\vec n} \right|}}
If the angle between the vectors is π2\dfrac{\pi }{2} , then m.n=0\vec m.\vec n = 0
If the angle between the vector is 00 , then m.n=mn\vec m.\vec n = \left| {\vec m} \right|\left| {\vec n} \right| , and
If the angle between the vector is π\pi , then m.n=mn\vec m.\vec n = - \left| {\vec m} \right|\left| {\vec n} \right|