Solveeit Logo

Question

Question: Find the adjoint of the matrix \(A=\left( \begin{matrix} -1 & -2 & -2 \\\ 2 & 1 & -2 \\\ ...

Find the adjoint of the matrix A=(122 212 221 )A=\left( \begin{matrix} -1 & -2 & -2 \\\ 2 & 1 & -2 \\\ 2 & -2 & 1 \\\ \end{matrix} \right) and hence show that A.(adjA)=AI3A.\left( adjA \right)=\left| A \right|{{I}_{3}}

Explanation

Solution

In the above question we have to prove that A.(adjA)=AI3A.\left( adjA \right)=\left| A \right|{{I}_{3}} for that firstly we need to determine the minor of matrix A and then find the (adjA)\left( adjA \right) after finding the (adjA)\left( adjA \right) we need to multiply it with the matrix A then find the determinant of matrix A which comes to be 27 multiply it with the identity matrix after multiplying both equate both terms together they will be equal.

Complete step-by-step answer:
So, lets get into a solution,
To solve the question, we have to first know what is an adjoint matrix and before that the co-factor and minor of a matrix.
A “minor” is the determinant of the square matrix from by deleting one row and one column from some larger matrix.
Example : a11a12a13 a21a22a23 a31a32a33 \begin{matrix} {{a}_{11}} & {{a}_{12}} & {{a}_{13}} \\\ {{a}_{21}} & {{a}_{22}} & {{a}_{23}} \\\ {{a}_{31}} & {{a}_{32}} & {{a}_{33}} \\\ \end{matrix} assume this is the determinent.
So, the minor of the element a11=a22a23 a32a33 {{a}_{11}}=\begin{matrix} {{a}_{22}} & {{a}_{23}} \\\ {{a}_{32}} & {{a}_{33}} \\\ \end{matrix}. Where the row and column releted to a11{{a}_{11}}is deleted for finding the minor.
The Cofactor is the number you get when you remove the column and row of a designated element in a matrix.
Example: Co-factor of the element a11{{a}_{11}}is A11=(1)1+1a22a23 a32a33 =a22a23 a32a33 {{A}_{11}}={{\left( -1 \right)}^{1+1}}\begin{matrix} {{a}_{22}} & {{a}_{23}} \\\ {{a}_{32}} & {{a}_{33}} \\\ \end{matrix}=\begin{matrix} {{a}_{22}} & {{a}_{23}} \\\ {{a}_{32}} & {{a}_{33}} \\\ \end{matrix}
Now, The transpose of a co-factor matrix is called adjoint of a matrix. Here one term comes that’s call transpose that mean when the row and column of a matrix is interchanged.
Example: (a11a12 a21a22 )T=(a11a21 a12a22 ){{\left( \begin{matrix} {{a}_{11}} & {{a}_{12}} \\\ {{a}_{21}} & {{a}_{22}} \\\ \end{matrix} \right)}^{T}}=\left( \begin{matrix} {{a}_{11}} & {{a}_{21}} \\\ {{a}_{12}} & {{a}_{22}} \\\ \end{matrix} \right)

Now, for finding the adjoint of a matrix we have to find the each element of the matrix’s co-factor and minor of the matrix.
Given matrix is A=(122 212 221 )A=\left( \begin{matrix} -1 & -2 & -2 \\\ 2 & 1 & -2 \\\ 2 & -2 & 1 \\\ \end{matrix} \right)
So, the co-factor of the element
1=a11=(1)1+112 21  =1(4) =3\begin{aligned} & -1={{a}_{11}}={{\left( -1 \right)}^{1+1}}\begin{matrix} 1 & -2 \\\ -2 & 1 \\\ \end{matrix} \\\ & =1-\left( 4 \right) \\\ & =-3 \end{aligned}
Continuing the process for each element,
2=a12=(1)1+222 21  =(2(4)) =6\begin{aligned} & -2={{a}_{12}}={{\left( -1 \right)}^{1+2}}\begin{matrix} 2 & -2 \\\ 2 & 1 \\\ \end{matrix} \\\ & =-\left( 2-\left( -4 \right) \right) \\\ & =-6 \end{aligned}
2=a13=(1)1+321 22  =(4)(2) =6\begin{aligned} & -2={{a}_{13}}={{\left( -1 \right)}^{1+3}}\begin{matrix} 2 & 1 \\\ 2 & -2 \\\ \end{matrix} \\\ & =\left( -4 \right)-\left( 2 \right) \\\ & =-6 \end{aligned}
2=a21=(1)2+122 21  =((2)(4)) =6\begin{aligned} & 2={{a}_{21}}={{\left( -1 \right)}^{2+1}}\begin{matrix} -2 & -2 \\\ -2 & 1 \\\ \end{matrix} \\\ & =-\left( \left( -2 \right)-\left( 4 \right) \right) \\\ & =6 \end{aligned}
1=a22=(1)2+212 21  =1(4) =3\begin{aligned} & 1={{a}_{22}}={{\left( -1 \right)}^{2+2}}\begin{matrix} -1 & -2 \\\ 2 & 1 \\\ \end{matrix} \\\ & =-1-\left( -4 \right) \\\ & =3 \end{aligned}
2=a23=(1)2+312 22  =(2(4)) =6\begin{aligned} & -2={{a}_{23}}={{\left( -1 \right)}^{2+3}}\begin{matrix} -1 & -2 \\\ 2 & -2 \\\ \end{matrix} \\\ & =-\left( 2-\left( -4 \right) \right) \\\ & =-6 \end{aligned}
2=a31=(1)3+122 12  =4(2) =6\begin{aligned} & 2={{a}_{31}}={{\left( -1 \right)}^{3+1}}\begin{matrix} -2 & -2 \\\ 1 & -2 \\\ \end{matrix} \\\ & =4-\left( -2 \right) \\\ & =6 \end{aligned}
2=a32=(1)3+212 21  =(1(4)) =3\begin{aligned} & -2={{a}_{32}}={{\left( -1 \right)}^{3+2}}\begin{matrix} 1 & -2 \\\ -2 & 1 \\\ \end{matrix} \\\ & =-\left( 1-\left( 4 \right) \right) \\\ & =3 \end{aligned}
1=a33=(1)3+312 21  =1(4) =3\begin{aligned} & 1={{a}_{33}}={{\left( -1 \right)}^{3+3}}\begin{matrix} -1 & -2 \\\ 2 & 1 \\\ \end{matrix} \\\ & =-1-\left( -4 \right) \\\ & =3 \end{aligned}
So, these are the co-factors of the determinant.
Now put the value in the matrix for finding the adjoint matrix. But remember the factor that the values must put in the transpose manner.
So, the adjoint matrix is adjA=(366 633 663 )adjA=\left( \begin{matrix} -3 & 6 & 6 \\\ -6 & 3 & 3 \\\ -6 & -6 & 3 \\\ \end{matrix} \right)
Now, we have to prove the A.(adjA)=AI3A.\left( adjA \right)=\left| A \right|{{I}_{3}}
So, L.H. S=A.(adjA)=A.\left( adjA \right)
So, we have to multiply the matrix AA with the adjoint matrix.
So, the product is =A.(adjA)=A.\left( adjA \right)
=(122 212 221 )×(366 633 663 ) =(3+12+1266+12666 66+1212+3+1212+36 6+1261266126+3 ) =(2700 0270 0027 ) \begin{aligned} & =\left( \begin{matrix} -1 & -2 & -2 \\\ 2 & 1 & -2 \\\ 2 & -2 & 1 \\\ \end{matrix} \right)\times \left( \begin{matrix} -3 & 6 & 6 \\\ -6 & 3 & 3 \\\ -6 & -6 & 3 \\\ \end{matrix} \right) \\\ & =\left( \begin{matrix} 3+12+12 & -6-6+12 & -6-6-6 \\\ -6-6+12 & 12+3+12 & 12+3-6 \\\ -6+12-6 & 12-6-6 & 12-6+3 \\\ \end{matrix} \right) \\\ & =\left( \begin{matrix} 27 & 0 & 0 \\\ 0 & 27 & 0 \\\ 0 & 0 & 27 \\\ \end{matrix} \right) \\\ \end{aligned}
Now we have to find out the determinant value of AAMatrix.
A=(122 212 221 )A=\left( \begin{matrix} -1 & -2 & -2 \\\ 2 & 1 & -2 \\\ 2 & -2 & 1 \\\ \end{matrix} \right)
A=(1)12 21 222 21 +222 12  =(1)(14)2(24)+2(4+2) =3+12+12 =27\begin{aligned} & \left| A \right|=\left( -1 \right)\left| \begin{matrix} 1 & -2 \\\ -2 & 1 \\\ \end{matrix} \right|-2\left| \begin{matrix} -2 & -2 \\\ -2 & 1 \\\ \end{matrix} \right|+2\left| \begin{matrix} -2 & -2 \\\ 1 & -2 \\\ \end{matrix} \right| \\\ & =\left( -1 \right)\left( 1-4 \right)-2\left( -2-4 \right)+2\left( 4+2 \right) \\\ & =3+12+12 \\\ & =27 \end{aligned}
Now in right hand side we see the unit matrix which is of order 33
That means I3=(100 010 001 ){{I}_{3}}=\left( \begin{matrix} 1 & 0 & 0 \\\ 0 & 1 & 0 \\\ 0 & 0 & 1 \\\ \end{matrix} \right)
So, the R.H.S is AI3\left| A \right|{{I}_{3}}
=27(100 010 001 ) =(2700 0270 0027 ) \begin{aligned} & =27\left( \begin{matrix} 1 & 0 & 0 \\\ 0 & 1 & 0 \\\ 0 & 0 & 1 \\\ \end{matrix} \right) \\\ & =\left( \begin{matrix} 27 & 0 & 0 \\\ 0 & 27 & 0 \\\ 0 & 0 & 27 \\\ \end{matrix} \right) \\\ \end{aligned}
So, as the L.H.S is equal to R.H.S so hence proved that A.(adjA)=AI3A.\left( adjA \right)=\left| A \right|{{I}_{3}}

Note: Here students have to take care of two or three factors. Once the adjoint matrix is evaluated there the value must be in the transpose of the value that is obtained. Another thing is whenever the adjoint matrix is evaluated we have to take care of cofactor and minor of that matrix with proper sign. And always whenever the step of multiplication students have to take row column and row method.