Solveeit Logo

Question

Question: Find the accelerations of rod A and wedge B in the arrangement shown in Fig. if the ratio of the mas...

Find the accelerations of rod A and wedge B in the arrangement shown in Fig. if the ratio of the mass of the wedge to that of the rod equals η\eta, and the friction between all contact surfaces is negligible.

Answer

aA=gsin2αsin2α+ηcos2α,aB=gsinαcosαsin2α+ηcos2αa_A = \frac{g \sin^2 \alpha}{\sin^2 \alpha + \eta \cos^2 \alpha}, a_B = \frac{g \sin \alpha \cos \alpha}{\sin^2 \alpha + \eta \cos^2 \alpha}

Explanation

Solution

Let mm be the mass of the rod and ηm\eta m be the mass of the wedge. Let aAa_A be the downward acceleration of the rod and aBa_B be the horizontal acceleration of the wedge. Due to the contact constraint, aA=aBtanαa_A = a_B \tan \alpha.

Applying Newton's second law to the rod in the vertical direction: mgNcosα=maAmg - N \cos \alpha = ma_A, where NN is the normal force between the rod and the wedge.

Applying Newton's second law to the wedge in the horizontal direction: Nsinα=ηmaBN \sin \alpha = \eta m a_B.

Solve these three equations for aAa_A and aBa_B.

From the second equation, N=ηmaBsinαN = \frac{\eta m a_B}{\sin \alpha}. Substitute this into the first equation: mgηmaBsinαcosα=maAmg - \frac{\eta m a_B}{\sin \alpha} \cos \alpha = ma_A.

gηaBcotα=aAg - \eta a_B \cot \alpha = a_A.

Substitute aB=aAcotαa_B = a_A \cot \alpha: gη(aAcotα)cotα=aAg - \eta (a_A \cot \alpha) \cot \alpha = a_A.

gηaAcot2α=aAg - \eta a_A \cot^2 \alpha = a_A.

g=aA(1+ηcot2α)g = a_A (1 + \eta \cot^2 \alpha).

aA=g1+ηcot2α=gsin2αsin2α+ηcos2αa_A = \frac{g}{1 + \eta \cot^2 \alpha} = \frac{g \sin^2 \alpha}{\sin^2 \alpha + \eta \cos^2 \alpha}.

Then aB=aAcotα=gsin2αsin2α+ηcos2αcosαsinα=gsinαcosαsin2α+ηcos2αa_B = a_A \cot \alpha = \frac{g \sin^2 \alpha}{\sin^2 \alpha + \eta \cos^2 \alpha} \frac{\cos \alpha}{\sin \alpha} = \frac{g \sin \alpha \cos \alpha}{\sin^2 \alpha + \eta \cos^2 \alpha}.

Answer:

The acceleration of rod A is aA=gsin2αsin2α+ηcos2αa_A = \frac{g \sin^2 \alpha}{\sin^2 \alpha + \eta \cos^2 \alpha} downwards.

The acceleration of wedge B is aB=gsinαcosαsin2α+ηcos2αa_B = \frac{g \sin \alpha \cos \alpha}{\sin^2 \alpha + \eta \cos^2 \alpha} horizontally to the right.