Solveeit Logo

Question

Question: Find the acceleration of \({{500gm}}\) block. ![](https://www.vedantu.com/question-sets/664ae798-3...

Find the acceleration of 500gm{{500gm}} block.

A) 8g13downward\dfrac{{{{8g}}}}{{{{13}}}}{{downward}}
B) g13upward\dfrac{{{g}}}{{{{13}}}}{{upward}}
C) 8g3downward\dfrac{{{{8g}}}}{{{3}}}{{downward}}
D) 8g7upward\dfrac{{{{8g}}}}{{{7}}}{{upward}}

Explanation

Solution

In this question, we have a system of three given masses, out of which M1{{{M}}_{{1}}} is heavy than others which will be pulled downward by gravity and if will further pull the two other masses m1{{{m}}_{{1}}} and m2{{{m}}_{{2}}} so by assuming that string is inextensible other masses will move with same acceleration a{{'a'}} so by summing up all the forces along with their signs will find acceleration.

Complete step by step solution:
As the block of mass m1{{{m}}_{{1}}} is suspended with a string it is acted upon by gravity, so force on mass M1{{{M}}_{{1}}} is.
{{{F}}_{{1}}}{{ = }}{{{M}}_{{1}}}{{g}}{{\\_\\_\\_}}\left( 1 \right)
As the mass M2{{{M}}_{{2}}} is lying on an inclined plane of angle of inclination 30o{{3}}{{{0}}^{{o}}}, the force acting tangentially downward to the block of mass M2{{{M}}_{{2}}} is M2gsinθ{{{M}}_{{2}}}{{g sin\theta }} as shown in fig. but this is in a direction opposite to the motion of rope so, it will be taken as ve{{ - ve}} , here we assume that there is no frictional force, so
{{{F}}_{{2}}}{{ = }}{{ - }}{{{M}}_{{2}}}{{g}}{{Sin3}}{{{0}}^{{o}}}\\_\\_\\_\left( 2 \right)
Further the mass M3{{{M}}_{{3}}} is pulled upward by the rope so, force which pulled if upward is given by
F3=M3g{{{F}}_{{3}}}{{ = }}{{{M}}_{{3}}}{{g}}
The net force on the system of three masses is down word i.e. pulls the weight M1{{{M}}_{{1}}} downward with acceleration a,{{a,}} so, if M{{M}} is net mass of the system i.e. (M1+M2+M3)=M,\left( {{{{M}}_{{1}}}{{ + }}{{{M}}_{{2}}}{{ + }}{{{M}}_{{3}}}} \right){{ = }}{{M,}} so net force on the system in given as,
{{F = }}{{Ma}}{{\\_\\_\\_}}\left( 3 \right)
As we know net force on the system is the sum of all the forces acting on the system i.e.
F=F1+F2+F3{{F}}{{ = }}{{{F}}_{{1}}}{{ + }}{{{F}}_{{2}}}{{ + }}{{{F}}_{{3}}}
Substituting the values of F0,F1,F2,F3,{{{F}}_{{0}}}{{,}}{{{F}}_{{1}}}{{,}}{{{F}}_{{{2,}}}}{{{F}}_{{3}}}{{,}} in above equation we get
Ma=M1gM2gsin30o+M3G{{{M}}_{{a}}}{{ = }}{{{M}}_{{1}}}{{g - }}{{{M}}_{{2}}}{{g}}{{sin3}}{{{0}}^{{o}}}{{ + }}{{{M}}_{{3}}}{{G}}
\left( {{{{M}}_{{1}}}{{ + }}{{{M}}_{{2}}}{{ + }}{{{M}}_{{3}}}} \right){{a}}{{ = }}{{g}}\left( {{{{M}}_{{1}}}{{ - }}{{{M}}_{{2}}}{{Sin3}}{{{0}}^{{o}}}{{ + }}{{{M}}_{{3}}}} \right)\\_\\_\\_\left( 4 \right)
It is given that M1=500gm{{{M}}_{{1}}}{{ = 500gm}}\, or 5001000Kg\dfrac{{{{500}}}}{{{{1000}}}}{{Kg}}
M2=100gm{{{M}}_{{2}}}{{ = }}{{100gm}} or 1001000kg\dfrac{{{{100}}}}{{{{1000}}}}{{kg}}
M3=50gm{{{M}}_{{3}}}{{ = }}{{50gm}} or 501000kg\dfrac{{{{50}}}}{{{{1000}}}}{{ kg }} and sin30o=12{{sin3}}{{{0}}^{{o}}}{{ = }}\dfrac{{{1}}}{{{2}}}
So, substituting all values in eqn (4)(4) we get
(50+100+500)a1000=g(50010001001000×12+501000)\dfrac{{\left( {{{50 + 100 + 500}}} \right){{a}}}}{{{{1000}}}}{{ = }}{{g}}\left( {\dfrac{{{{500}}}}{{{{1000}}}}{{ - }}\dfrac{{{{100}}}}{{{{1000}}}}{{ \times }}\dfrac{{{1}}}{{{2}}}{{ + }}\dfrac{{{{50}}}}{{{{1000}}}}} \right)
(6501000)a=g(8002000)\left( {\dfrac{{{{650}}}}{{{{1000}}}}} \right){{a}}{{ = }}{{g}}\left( {\dfrac{{{{800}}}}{{{{2000}}}}} \right)
65a=g×40{{65a}}{{ = }}{{g \times 40}}
a=40g65a=8g13{{a}}{{ = }}\dfrac{{{{40g}}}}{{{{65}}}} \Rightarrow {{a}}{{ = }}\dfrac{{{{8g}}}}{{{{13}}}}

Note: i) If the coefficient of friction is not given n the question then assume that the surface is frictionless
ii) Always consider the string is inextensible in such questions.
iii) It’s always better to draw a free body diagram and depict forces with direction and solve accordingly.