Solveeit Logo

Question

Mathematics Question on Applications of Derivatives

Find the absolute maximum and minimum values of the function ff given by f(x)=cos2x+sinx,x[0,π]f(x)=cos^2x+sinx,x∈[0,π]

Answer

f(x)=cos2x+sinxf(x)=cos^2x+sinx
f(x)=2cosx(sinx)+cosxf'(x)=2cosx(-sinx)+cosx
=2sinxcosx+cosx=-2sinx\,cosx+cosx
Now,f(x)=0f(x)=0
⇒2sinx\,cosx=cosx$$⇒cosx(2sinx-1)
sinx=12orcosx=0⇒sinx=\frac{1}{2}\, or\, cosx=0
x=π6,orπ2asx[0,π]⇒x=\frac{π}{6},or \frac{π}{2} as x∈[0,π]
Now, evaluating the value of ff at critical points x=π2x=\frac{π}{2} and x=π6x=\frac{π}{6} and at the end points of the interval [0,π][0,π] (i.e., at x=0x = 0 and x=πx = π), we have:
f(π6)=cos2π6+sinπ6f(\frac{π}{6})=cos^2\frac{π}{6}+sin\frac{π}{6}
=(32)2+12=54=(\sqrt{\frac{3}{2}})^2+\frac{1}{2}=\frac{5}{4}
f(0)=cos20+sin0=1+0=1f(0)=cos^20+sin0=1+0=1
f(π)=cos2π+sinπ=(1)2+0=1f(π)=cos^2π+sinπ=(-1)^2+0=1
f(π2)=cos2π2+sinπ2=0+1=1f(\frac{π}{2})=cos^2\frac{π}{2}+sin\frac{π}{2}=0+1=1
Hence, the absolute maximum value of f is 54\frac{5}{4} is occurring at x=π6x=\frac{π}{6} and the absolute minimum value of ff is 1 occurring at x=0,π/2x=0,π/2,and ππ.