Solveeit Logo

Question

Question: Find the 13th term in the expansion of \[{\left( {9x - \dfrac{1}{{3\sqrt x }}} \right)^{18}},x \ne 0...

Find the 13th term in the expansion of (9x13x)18,x0{\left( {9x - \dfrac{1}{{3\sqrt x }}} \right)^{18}},x \ne 0

Explanation

Solution

Here we will use binomial term expansion and expand the given term to get its desired value.
The binomial expansion is given:-

(a+b)n=nC0(a)0(b)n+nC1(a)1(b)n1+nC2(a)2(b)n2+.....................+nCn(a)n(b)0  {\left( {a + b} \right)^n} = {}^n{C_0}{\left( a \right)^0}{\left( b \right)^n} + {}^n{C_1}{\left( a \right)^1}{\left( b \right)^{n - 1}} + {}^n{C_2}{\left( a \right)^2}{\left( b \right)^{n - 2}} + ..................... + {}^n{C_n}{\left( a \right)^n}{\left( b \right)^0} \\\ \\\

Complete step-by-step answer:
The given expansion is:
(9x13x)18{\left( {9x - \dfrac{1}{{3\sqrt x }}} \right)^{18}}
Now since we know that the general expansion of (a+b)n{\left( {a + b} \right)^n} is given by:
Tr+1=nCr(a)nr(b)r{T_{r + 1}} = {}^n{C_r}{\left( a \right)^{n - r}}{\left( b \right)^r}
Now since we have to find the 13th term of the expression
Therefore,

r=12 n=18 a=9x b=13x r = 12 \\\ n = 18 \\\ a = 9x \\\ b = - \dfrac{1}{{3\sqrt x }} \\\

Putting in the values we get:
T12+1=18C12(9x)1812(13x)12{T_{12 + 1}} = {}^{18}{C_{12}}{\left( {9x} \right)^{18 - 12}}{\left( { - \dfrac{1}{{3\sqrt x }}} \right)^{12}}
Now since we can write
(13x)12=(13)12[(1x)12]12{\left( { - \dfrac{1}{{3\sqrt x }}} \right)^{12}} = {\left( {\dfrac{{ - 1}}{3}} \right)^{12}}{\left[ {{{\left( {\dfrac{1}{x}} \right)}^{\dfrac{1}{2}}}} \right]^{12}}
Therefore putting in the values we get:-
T13=18C12(9x)6(13)12[(1x)12]12{T_{13}} = {}^{18}{C_{12}}{\left( {9x} \right)^6}{\left( {\dfrac{{ - 1}}{3}} \right)^{12}}{\left[ {{{\left( {\dfrac{1}{x}} \right)}^{\dfrac{1}{2}}}} \right]^{12}}
On simplifying it we get:-
T13=18C12(32)6(x)6(13)12(1x)6{T_{13}} = {}^{18}{C_{12}}{\left( {{3^2}} \right)^6}{\left( x \right)^6}{\left( {\dfrac{1}{3}} \right)^{12}}{\left( {\dfrac{1}{x}} \right)^6}
Cancelling the terms we get:-
T13=18C12{T_{13}} = {}^{18}{C_{12}}
Now we know that,
nCr=n!r!(nr)!{}^n{C_r} = \dfrac{{n!}}{{r!\left( {n - r} \right)!}}
Therefore,
T13=18!12!×6!{T_{13}} = \dfrac{{18!}}{{12! \times 6!}}
Now expanding the factorials we get:-
T13=18×17×16×15×14×13×12!12!×6×5×4×3×2×1{T_{13}} = \dfrac{{18 \times 17 \times 16 \times 15 \times 14 \times 13 \times 12!}}{{12! \times 6 \times 5 \times 4 \times 3 \times 2 \times 1}}
Cancelling the terms and solving it further we get:-
T13=17×2×3×14×13{T_{13}} = 17 \times 2 \times 3 \times 14 \times 13
Multiplying the terms we get:-
T13=18564{T_{13}} = 18564

Hence 13th term is 18564

Note: The general expansion of (a+b)n{\left( {a + b} \right)^n} is given by:
Tr+1=nCr(a)nr(b)r{T_{r + 1}} = {}^n{C_r}{\left( a \right)^{n - r}}{\left( b \right)^r}In order to ease the calculation, one should use the above formula otherwise we can also solve this question by the following formula:

(a+b)n=nC0(a)0(b)n+nC1(a)1(b)n1+nC2(a)2(b)n2+.....................+nCn(a)n(b)0  {\left( {a + b} \right)^n} = {}^n{C_0}{\left( a \right)^0}{\left( b \right)^n} + {}^n{C_1}{\left( a \right)^1}{\left( b \right)^{n - 1}} + {}^n{C_2}{\left( a \right)^2}{\left( b \right)^{n - 2}} + ..................... + {}^n{C_n}{\left( a \right)^n}{\left( b \right)^0} \\\ \\\