Solveeit Logo

Question

Question: Find \[{\tan ^{ - 1}}\left( {\dfrac{1}{{2x + 1}}} \right) + {\tan ^{ - 1}}\left( {\dfrac{1}{{4x + 1}...

Find tan1(12x+1)+tan1(14x+1)=tan1(2x2){\tan ^{ - 1}}\left( {\dfrac{1}{{2x + 1}}} \right) + {\tan ^{ - 1}}\left( {\dfrac{1}{{4x + 1}}} \right) = {\tan ^{ - 1}}\left( {\dfrac{2}{{{x^2}}}} \right) has
1)1) one solution
2)2) two solutions
3)3) three solutions
4)4) no solution

Explanation

Solution

This is an inverse trigonometric function question. Here in the LHS we will use the formula of the tan1A+tan1Btan^{-1}A + tan^{-1}B formula. Then we will simplify it. After this we will multiply tan on both sides. Then we will get a cubic equation. We will solve the equation to get our required answers.

Complete step-by-step answer:
Given problem is tan1(12x+1)+tan1(14x+1)=tan1(2x2){\tan ^{ - 1}}\left( {\dfrac{1}{{2x + 1}}} \right) + {\tan ^{ - 1}}\left( {\dfrac{1}{{4x + 1}}} \right) = {\tan ^{ - 1}}\left( {\dfrac{2}{{{x^2}}}} \right)
we find how many solutions have this problem. It means we find how many xx values have this problem.
Given a problem to use the formulae is,
tan1x+tan1y=tan1(x+y1xy),xy<1{\tan ^{ - 1}}x + {\tan ^{ - 1}}y = {\tan ^{ - 1}}\left( {\dfrac{{x + y}}{{1 - xy}}} \right)\,,\,\,xy < 1
Here x=12x+1x = \dfrac{1}{{2x + 1}} and y=14x+1y = \dfrac{1}{{4x + 1}}
Now apply the formulae to a given problem
tan1(12x+1)+tan1(14x+1)=tan1(12x+1+14x+11(12x+1)(14x+1)){\tan ^{ - 1}}\left( {\dfrac{1}{{2x + 1}}} \right) + {\tan ^{ - 1}}\left( {\dfrac{1}{{4x + 1}}} \right) = {\tan ^{ - 1}}\left( {\dfrac{{\dfrac{1}{{2x + 1}} + \dfrac{1}{{4x + 1}}}}{{1 - \left( {\dfrac{1}{{2x + 1}}} \right)\left( {\dfrac{1}{{4x + 1}}} \right)}}} \right)\,
Take least common multiply on numerator and denominator
=tan1(4x+1+2x+1(2x+1)(4x+1)(2x+1)(4x+1)1(2x+1)(4x+1))= {\tan ^{ - 1}}\left( {\dfrac{{\dfrac{{4x + 1 + 2x + 1}}{{\left( {2x + 1} \right)\left( {4x + 1} \right)}}}}{{\dfrac{{\left( {2x + 1} \right)\left( {4x + 1} \right) - 1}}{{\left( {2x + 1} \right)\left( {4x + 1} \right)}}}}} \right)
=tan1(6x+2(2x+1)(4x+1)8x2+2x+4x+11(2x+1)(4x+1))= {\tan ^{ - 1}}\left( {\dfrac{{\dfrac{{6x + 2}}{{\left( {2x + 1} \right)\left( {4x + 1} \right)}}}}{{\dfrac{{8{x^2} + 2x + 4x + 1 - 1}}{{\left( {2x + 1} \right)\left( {4x + 1} \right)}}}}} \right)
=tan1(6x+28x2+6x)= {\tan ^{ - 1}}\left( {\dfrac{{6x + 2}}{{8{x^2} + 6x}}} \right)
And problem to equating,
tan1(6x+28x2+6x)=tan1(2x2){\tan ^{ - 1}}\left( {\dfrac{{6x + 2}}{{8{x^2} + 6x}}} \right) = {\tan ^{ - 1}}\left( {\dfrac{2}{{{x^2}}}} \right)
Both sides multiply on tan\tan then tan1{\tan ^{ - 1}}cancels,
6x+28x2+6x=2x2\dfrac{{6x + 2}}{{8{x^2} + 6x}} = \dfrac{2}{{{x^2}}}
Left-hand side numerator and denominator take common 22 and cancel that
2(3x+1)2(4x2+3x)=2x2\dfrac{{2\left( {3x + 1} \right)}}{{2\left( {4{x^2} + 3x} \right)}} = \dfrac{2}{{{x^2}}}
The equating the values,

x2(3x+1)=2(4x2+3x) 3x3+x2=8x2+6x 3x3+x28x26x=0 3x37x26x=0  {x^2}\left( {3x + 1} \right) = 2\left( {4{x^2} + 3x} \right) \\\ 3{x^3} + {x^2} = 8{x^2} + 6x \\\ 3{x^3} + {x^2} - 8{x^2} - 6x = 0 \\\ 3{x^3} - 7{x^2} - 6x = 0 \\\

Take common on xxthe term,
(x)(3x27x6)=0\left( x \right)\left( {3{x^2} - 7x - 6} \right) = 0
And equating to zero. Now use factorize method,
3x27x6=03{x^2} - 7x - 6 = 0
7x- 7x term separate to 9x - 9x and 2x2x
3x29x+2x6=03{x^2} - 9x + 2x - 6 = 0
Take the first two terms to common on 3x3x
Then 3x(x3)3x\left( {x - 3} \right)
And last two terms to common on 22
Then 2(x3)2\left( {x - 3} \right)
And join both terms,
3x(x3)+2(x3)=03x\left( {x - 3} \right) + 2\left( {x - 3} \right) = 0
Take common on (x3)\left( {x - 3} \right)a term to both parts,
Now equating both terms to 0
(x3)(3x+2)=0\left( {x - 3} \right)\left( {3x + 2} \right) = 0
x3=0,3x+2=0x - 3 = 0,\,3x + 2 = 0
x3=0x - 3 = 0 in this term to add both sides on 33
x=3x = 3
3x+2=03x + 2 = 0in this term to subtract both sides on 22
3x=23x = - 2
Now divide both sides on 33
x=23x = \dfrac{{ - 2}}{3}
We get x=3,x=23x = 3,x = \dfrac{{ - 2}}{3}
Finallyxx, values are,
x=0,x=3,x=23x = 0,x = 3,x = \dfrac{{ - 2}}{3}
So, xx have 33 values. And our problems have 33 solutions.

So, the correct answer is “Option (3)”.

Note: In formulae on a given problem is tan1x+tan1y=tan1(x+y1xy),xy<1{\tan ^{ - 1}}x + {\tan ^{ - 1}}y = {\tan ^{ - 1}}\left( {\dfrac{{x + y}}{{1 - xy}}} \right)\,,\,\,xy < 1
The least common multiple means to take common multiply least value on given terms . Then equating zero on getting the polynomial. Then find the xx terms to get xx values on getting the polynomial. Factorize means, given a polynomial to find the factors. In the used factorize method carefully find the factors on a given problem.