Solveeit Logo

Question

Question: Find \[\sinh \left( {\dfrac{\pi }{6}\iota } \right) = \] (1) \[\dfrac{{ - \iota }}{2}\] (2) \[\d...

Find sinh(π6ι)=\sinh \left( {\dfrac{\pi }{6}\iota } \right) =
(1) ι2\dfrac{{ - \iota }}{2}
(2) ι2\dfrac{\iota }{2}
(3) ι32\dfrac{{\iota \sqrt 3 }}{2}
(4) ι32\dfrac{{ - \iota \sqrt 3 }}{2}

Explanation

Solution

Hint : In this question, we have to find the value of sinh(π6ι)\sinh \left( {\dfrac{\pi }{6}\iota } \right) .As we don’t know the direct value of hyperbolic functions. So, in order to solve this question, we will first explore the relation between complex hyperbolic and complex trigonometric functions, i.e., sinh(ιx)=ιsinx\sinh \left( {\iota x} \right) = \iota \sin x .After that we will substitute the value of xx as π6\dfrac{\pi }{6} in the above result to get the required value.

Complete step-by-step answer :
First of all, we will first explore the relation between complex hyperbolic and complex trigonometric functions.
Now, as we know that
Exponential form of sinx\sin x is eιxeιx2ι (1)\dfrac{{{e^{\iota x}} - {e^{ - \iota x}}}}{{2\iota }}{\text{ }} - - - \left( 1 \right)
And exponential form of sinhx\sinh x is exex2 (2)\dfrac{{{e^x} - {e^{ - x}}}}{2}{\text{ }} - - - \left( 2 \right)
Now, if we substitute ιx\iota x in the place of xx in equation (2)\left( 2 \right) ,we get
sinh(ιx)=eιxeιx2 (3)\sinh \left( {\iota x} \right) = \dfrac{{{e^{\iota x}} - {e^{ - \iota x}}}}{2}{\text{ }} - - - \left( 3 \right)
On multiplying and dividing by ι\iota on the right-hand side of the equation (3)\left( 3 \right) ,we get
sinh(ιx)=ι(eιxeιx2ι) (4)\sinh \left( {\iota x} \right) = \iota \left( {\dfrac{{{e^{\iota x}} - {e^{ - \iota x}}}}{{2\iota }}} \right){\text{ }} - - - \left( 4 \right)
Now, using equation (1)\left( 1 \right) we can write equation (4)\left( 4 \right) as,
sinh(ιx)=ιsinx\sinh \left( {\iota x} \right) = \iota \sin x
which is the relation we required.
Now, we have to find the value of sinh(π6ι)\sinh \left( {\dfrac{\pi }{6}\iota } \right)
So, here x=π6x = \dfrac{\pi }{6}
So, on substituting the value of xx , we get
sinh(π6ι)=ιsin(π6)\sinh \left( {\dfrac{\pi }{6}\iota } \right) = \iota \sin \left( {\dfrac{\pi }{6}} \right)
As we know that the value of sin(π6)\sin \left( {\dfrac{\pi }{6}} \right) is equal to 12\dfrac{1}{2}
Therefore, we get
sinh(π6ι)=ι(12)\sinh \left( {\dfrac{\pi }{6}\iota } \right) = \iota \left( {\dfrac{1}{2}} \right)
sinh(π6ι)=ι2\Rightarrow \sinh \left( {\dfrac{\pi }{6}\iota } \right) = \dfrac{\iota }{2}
Thus, the value of sinh(π6ι)\sinh \left( {\dfrac{\pi }{6}\iota } \right) is equal to ι2\dfrac{\iota }{2}
So, the correct answer is “Option 2”.

Note : The first mistake students can make while solving these types of questions is to write the formulas for sinx\sin x and sinhx\sinh x in their exponential form. So, don’t get confused between the two. And another chance of mistake can happen while finding the relation, so try not to do the same.
Also, there are some more important relations between complex hyperbolic and complex trigonometric functions, that are:
(i) sin(x)=ιsinh(ιx)\sin \left( x \right) = - \iota \sinh \left( {\iota x} \right)
(ii) sin(ιx)=ιsinh(x)\sin \left( {\iota x} \right) = \iota \sinh \left( x \right)
(iii) sinh(x)=ιcos(ιx)\sinh \left( x \right) = - \iota \cos \left( {\iota x} \right)
(iv) cosh(x)=cos(ιx)\cosh \left( x \right) = \cos \left( {\iota x} \right)
(v) cos(x)=cosh(ιx)\cos \left( x \right) = \cosh \left( {\iota x} \right)