Solveeit Logo

Question

Question: Find \( \sin \left( {\dfrac{x}{2}} \right)\,\,,\,\,\cos \left( {\dfrac{x}{2}} \right)\,\,and\,\,\tan...

Find sin(x2),cos(x2)andtan(x2)\sin \left( {\dfrac{x}{2}} \right)\,\,,\,\,\cos \left( {\dfrac{x}{2}} \right)\,\,and\,\,\tan \left( {\dfrac{x}{2}} \right) if tanx=44\tan x = \dfrac{{ - 4}}{4} xIIndquadrantx \in IInd\,\,quadrant .

Explanation

Solution

Hint : For this we first from the given tanx\tan x we find value of sinx\sin x and cosx\cos x then using these values in half angle formula to find the value of sinx2andcosx2\sin \dfrac{x}{2}\,\,and\,\,\cos \dfrac{x}{2} and then dividing result of two to get value of tanx2\tan \dfrac{x}{2} .

Complete step-by-step answer :
Given, tanx=44\tan x = \dfrac{{ - 4}}{4}
Or can be written as:
tanx=1\tan x = - 1
x=450\Rightarrow x = {45^0}
Then, sinx=12andcosx=12\sin x = \dfrac{1}{{\sqrt 2 }}\,\,\,and\,\,\,\cos x = \dfrac{{ - 1}}{{\sqrt 2 }} as xIIndquadrantx \in IInd\,\,quadrant
Also, for half angles, we know that:
sinx2=1cosx2\sin \dfrac{x}{2} = \sqrt {\dfrac{{1 - \cos x}}{2}}
Substituting value in above we have:
sinx2=1(12)2 sinx2=1+122 sinx2=2+122  \sin \dfrac{x}{2} = \sqrt {\dfrac{{1 - \left( { - \dfrac{1}{{\sqrt 2 }}} \right)}}{2}} \\\ \Rightarrow \sin \dfrac{x}{2} = \sqrt {\dfrac{{1 + \dfrac{1}{{\sqrt 2 }}}}{2}} \\\ \Rightarrow \sin \dfrac{x}{2} = \sqrt {\dfrac{{\sqrt 2 + 1}}{{2\sqrt 2 }}} \\\
Also,
cosx2=1+cosx2\cos \dfrac{x}{2} = \sqrt {\dfrac{{1 + \cos x}}{2}}

Substituting value in above we have:
cosx2=1+(12)2 coxx2=1122 cosx2=2122  \cos \dfrac{x}{2} = \sqrt {\dfrac{{1 + \left( { - \dfrac{1}{{\sqrt 2 }}} \right)}}{2}} \\\ \Rightarrow cox\dfrac{x}{2} = \sqrt {\dfrac{{1 - \dfrac{1}{{\sqrt 2 }}}}{2}} \\\ \Rightarrow \cos \dfrac{x}{2} = \sqrt {\dfrac{{\sqrt 2 - 1}}{{2\sqrt 2 }}} \\\
On dividing above two results. We have
sinx2cosx2=2+1222122 tanx2=2+121  \dfrac{{\sin \dfrac{x}{2}}}{{\cos \dfrac{x}{2}}} = \dfrac{{\sqrt {\dfrac{{\sqrt 2 + 1}}{{2\sqrt 2 }}} }}{{\sqrt {\dfrac{{\sqrt 2 - 1}}{{2\sqrt 2 }}} }} \\\ \tan \dfrac{x}{2} = \sqrt {\dfrac{{\sqrt 2 + 1}}{{\sqrt 2 - 1}}} \\\
Hence, values of sinx2,cosx2andtanx2\sin \dfrac{x}{2},\,\,\cos \dfrac{x}{2}\,\,and\,\,\tan \dfrac{x}{2} are 2+122\sqrt {\dfrac{{\sqrt 2 + 1}}{{2\sqrt 2 }}} , 2122\sqrt {\dfrac{{\sqrt 2 - 1}}{{2\sqrt 2 }}} and 2+121\sqrt {\dfrac{{\sqrt 2 + 1}}{{\sqrt 2 - 1}}} respectively.

Note : For trigonometric function problem when solving according to quadrant one must take care of positive and negative signs according to quadrant and also to find solution of trigonometric function one should choose correct trigonometric formula to find correct solution of the problem.