Solveeit Logo

Question

Question: Find \(\sin \left( {\dfrac{\theta }{2}} \right)\) , if\(\cos \theta = - \dfrac{4}{5}\) and \( - 270 ...

Find sin(θ2)\sin \left( {\dfrac{\theta }{2}} \right) , ifcosθ=45\cos \theta = - \dfrac{4}{5} and 270<θ<\-180 - 270 < \theta < \- 180.

Explanation

Solution

To solve this problem, here we are using trigonometric identities and then we will substitute the value of cosθ\cos \theta i.e,45 - \dfrac{4}{5} to find the value of sin(θ2)\sin \left( {\dfrac{\theta }{2}} \right) and we clearly know that there are six trigonometric ratios i.e, sine(sin)\left( {\sin } \right) , cosine(cos)\left( {\cos } \right), tangent(tan)\left( {\tan } \right), cosec(csc)\left( {\csc } \right) , secant(sec)\left( {\sec } \right) , cotangent (cot)\left( {\cot } \right) .

Complete step by step solution:
In this problem, we have givencosθ=45\cos \theta = - \dfrac{4}{5}and the value of θ\theta lies between270 - 270 and180 - 180 and to solve the value ofsin(θ2)\sin \left( {\dfrac{\theta }{2}} \right), we are using the identity,
cos2x=12sin2x\cos 2x = 1 - 2{\sin ^2}x . Here the value of xx isθ2\dfrac{\theta }{2} , now, we will substitute it in place of xxand on substituting we get,
cos2×θ2=12sin2×θ2\cos 2 \times \dfrac{\theta }{2} = 1 - 2{\sin ^2} \times \dfrac{\theta }{2}
Now, the equation becomes,
cosθ=12sin2(θ2)\Rightarrow \cos \theta = 1 - 2{\sin ^2}\left( {\dfrac{\theta }{2}} \right)
Firstly, we will rearrange the equation as,
2sin2(θ2)=1cosθ\Rightarrow 2{\sin ^2}\left( {\dfrac{\theta }{2}} \right) = 1 - \cos \theta
Now, we will substitute the value of cosθ\cos \theta in the above equation,
2sin2(θ2)=1(45)\Rightarrow 2{\sin ^2}\left( {\dfrac{\theta }{2}} \right) = 1 - \left( { - \dfrac{4}{5}} \right)
On further solving, we get,

2sin2(θ2)=95 sin2(θ2)=95×12 sin2(θ2)=910  \Rightarrow 2{\sin ^2}\left( {\dfrac{\theta }{2}} \right) = \dfrac{9}{5} \\\ \Rightarrow {\sin ^2}\left( {\dfrac{\theta }{2}} \right) = \dfrac{9}{5} \times \dfrac{1}{2} \\\ \Rightarrow {\sin ^2}\left( {\dfrac{\theta }{2}} \right) = \dfrac{9}{{10}} \\\

Now, on taking square root on both sides, we get,
sinθ2=910 sinθ2=±310  \Rightarrow \sin \dfrac{\theta }{2} = \sqrt {\dfrac{9}{{10}}} \\\ \Rightarrow \sin \dfrac{\theta }{2} = \pm \dfrac{3}{{\sqrt {10} }} \\\
But, we have also given that270<θ<\-180 - 270 < \theta < \- 180, if we divide it by 22,2702<θ2<1802\dfrac{{ - 270}}{2} < \dfrac{\theta }{2} < \dfrac{{ - 180}}{2} we get,135<θ2<\-90 - 135 < \dfrac{\theta }{2} < \- 90 , which means that θ2\dfrac{\theta }{2} lies in the third quadrant, hence the value of sinθ2\sin \dfrac{\theta }{2} is310 - \dfrac{3}{{\sqrt {10} }}.

Note: There are some rules for the trigonometric ratios in the quadrants, in the first quadrants all the trigonometric ratios are positive, in the second quadrant only the values of sin are positive, in the third quadrant only the values of tan are positive and in the fourth quadrant only the values of cos are positive and when the angle formed moving anticlockwise then it is positive and if it is formed by moving clockwise then it is negative.