Question
Mathematics Question on Trigonometric Functions of Sum and Difference of Two Angles
Find sin2x,cos2xandtan2xforcosx=−21forcosx=−31, in quadrant III.
Answer
Here, x is in quadrant III.
i.e., π<x<23π
⇒2π<2x<43π
Therefore, cos2xand,tan2xandtan2xarenegative,whereassin2xispositive.
it is given that cosx=−31.
cos x=1-2 sin2 2x
⇒sin22x=21−cosx
⇒sin22x=21−(−31)=2(1+31)=234=32
⇒sin2x=32[sin2xispositive]
∴sin2x=32×33=36
Now, cosx=2cos22x−1
⇒cos22x=21+cosx=21+(−31)=2(23−1)=2(32)=31
⇒cos2x=−31[cos2xisnegative]
∴cos2x=−31×33=33
tan2x=cos2xsin2x=(3−1)(32)=−2
Thus, the respective values of sin2x,cos2xandtan2xare36,3−3,and−2